Article

Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation

Department of Respiratory Medicine, UK National Heart and Lung Institute, and Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London W2 1PG, UK.
Nature medicine (Impact Factor: 28.05). 03/2008; 14(2):199-204. DOI: 10.1038/nm1713
Source: PubMed

ABSTRACT Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.

Download full-text

Full-text

Available from: Ross P Walton, Jun 28, 2015
0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of NF-κB activation and deficient anti-viral interferon induction in the pathogenesis of rhinovirus-induced asthma exacerbations is poorly understood. We provide the first in vivo evidence in man and mouse that rhinovirus infection enhanced bronchial epithelial cell NF-κB p65 nuclear expression, NF-κB p65 DNA binding in lung tissue and NF-κB-regulated airway inflammation. In vitro inhibition of NF-κB reduced rhinovirus-induced pro-inflammatory cytokines but did not affect type I/III interferon induction. Rhinovirus-infected p65-deficient mice exhibited reduced neutrophilic inflammation, yet interferon induction, antiviral responses and virus loads were unaffected, indicating that NF-κB p65 is required for pro-inflammatory responses, but redundant in interferon induction by rhinoviruses in vivo. Conversely, IFNAR1(-/-) mice exhibited enhanced neutrophilic inflammation with impaired antiviral immunity and increased rhinovirus replication, demonstrating that interferon signalling was critical to antiviral immunity. We thus provide new mechanistic insights into rhinovirus infection and demonstrate the therapeutic potential of targeting NF-κB p65 (to suppress inflammation but preserve anti-viral immunity) and type I IFN signalling (to enhance deficient anti-viral immunity) to treat rhinovirus-induced exacerbations of airway diseases. See accompanying article http://dx.doi.org/10.1002/emmm.201202032.
    EMBO Molecular Medicine 12/2012; 4(12). DOI:10.1002/emmm.201201650 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhinoviruses (RVs) are picornaviruses that are causative agents of the majority of upper respiratory tract infections, or "common colds," in humans. RVs infect both the upper and lower respiratory tract, and in addition to the common cold may also cause pneumonia, complications in patients with chronic lung diseases such as cystic fibrosis, and asthma exacerbations. Convenient animal models are not available to study the pathogenesis of rhinovirus-induced illness. Rhinovirus RV1A replicates poorly in mouse cells; variants with improved replication were selected by serial passage through mouse embryonic fibroblasts and mouse lung epithelial cells. Adaptation for improved growth in mouse cells was mediated by amino acid changes in the RV1a non-structural protein 3A. Mouse cell-adapted RV1A was capable of productively infecting mice in which the airway was subjected to chemical permeabilization. A mouse model for RV infection will permit studies of RV pathogenesis and may identify targets for therapeutic intervention.
    Virology 09/2011; 420(2):82-8. DOI:10.1016/j.virol.2011.08.021 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muc1 (MUC1 in humans) is a membrane-tethered mucin that exerts anti-inflammatory effects in the lung during bacterial infection. Muc1 and other mucins are also likely to form a protective barrier in the lung. We used mouse adenovirus type 1 (MAV-1, also known as MAdV-1) to determine the role of Muc1 in the pathogenesis of an adenovirus in its natural host. Following intranasal inoculation of wild type mice, we detected increased TNF-α, a cytokine linked to Muc1 production, but no consistent changes in the production of lung Muc1, Muc5ac or overall lung mucus production. Viral loads were modestly higher in the lungs of Muc1(-/-) mice compared to Muc1(+/+) mice at several early time points but decreased to similar levels by 14 days post infection in both groups. However, cellular inflammation and the expression of CXCL1, CCL5, and CCL2 did not significantly differ between Muc1(-/-) and Muc1(+/+) mice. Our data therefore suggest that Muc1 may contribute to a physical barrier that protects against MAV-1 respiratory infection. However, our data do not reveal an anti-inflammatory effect of Muc1 that contributes to MAV-1 pathogenesis.
    Virus Research 07/2011; 160(1-2):351-9. DOI:10.1016/j.virusres.2011.07.012 · 2.83 Impact Factor