Article

Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study

1INSERM, UMR_S679 Neurologie & Thérapeutique Expérimentale, F-75013, Paris, France.
Brain (Impact Factor: 10.23). 04/2008; 131(Pt 3):732-46. DOI: 10.1093/brain/awn012
Source: PubMed

ABSTRACT Frontotemporal dementia (FTD), characterized by behavioural and language disorders, is a clinically, genetically and pathologically heterogeneous group of diseases. The most recently identified of the four known genes is GRN, associated with 17q-linked FTD with ubiquitin-immunoreactive inclusions. GRN was analysed in 502 probands with frontal variant FTD (fvFTD), FTD with motoneuron disease (FTD-MND), primary progressive aphasia (PPA) and corticobasal degeneration syndrome (CBDS). We studied the clinical, neuropsychological and brain perfusion characteristics of mutation carriers. Eighteen mutations, seven novel were found in 24 families including 32 symptomatic mutation carriers. No copy number variation was found. The phenotypes associated with GRN mutations vary greatly: 20/32 (63%) carriers had fvFTD, the other (12/32, 37%) had clinical diagnoses of PPA, CBDS, Lewy body dementia or Alzheimer's disease. Parkinsonism developed in 13/32 (41%), visual hallucinations in 8/32 (25%) and motor apraxia in 5/21 (24%). Constructional disorders were present in 10/21 (48%). Episodic memory disorders were frequent (16/18, 89%), consistent with hippocampal amnestic syndrome in 5/18 (28%). Hypoperfusion was observed in the hippocampus, parietal lobe and posterior cingulate gyrus, as well as the frontotemporal cortices. The frequency of mutations according to phenotype was 5.7% (20/352) in fvFTD, 17.9% (19/106) in familial forms, 4.4% in PPA (3/68), 3.3% in CBDS (1/30). Hallucinations, apraxia and amnestic syndrome may help differentiate GRN mutation carriers from others FTD patients. Variable phenotypes and neuropsychological profiles, as well as brain perfusion profiles associated with GRN mutations may reflect different patterns of neurodegeneration. Since all the mutations cause a progranulin haploinsufficiency, additional factors probably explain the variable clinical presentation of the disease.

Full-text

Available from: Eric Guedj, Jun 02, 2015
0 Followers
 · 
191 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
    Acta Neuropathologica 12/2014; 129(4). DOI:10.1007/s00401-014-1380-1 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posterior cortical atrophy (PCA) is characterized by progressive visuoperceptual and visuospatial deficits and commonly considered to be an atypical variant of Alzheimer disease. Mutations of the GRN gene are responsible for a large phenotypic spectrum, but, to our knowledge, the association of PCA with GRN mutations has never been described. We studied a patient presenting with insidious impairment of basic visuoperceptual skills and apperceptive visual agnosia with predominant posterior atrophy corresponding to a visual/ventral variant of PCA. A heterozygous p.Arg110* (c.328C>T) GRN mutation was identified in this patient. This study extends the clinical spectrum of GRN mutations that may be responsible for a PCA phenotype. The GRN phenotypes overlap other degenerative dementias and highlight the limits of actual nosologic boundaries in dementias. The GRN gene should be analyzed in patients with PCA, particularly when the damage progresses to anterior cerebral regions and a family history of dementia is present.
    JAMA Neurology 12/2014; 72(2). DOI:10.1001/jamaneurol.2014.3308 · 7.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary progressive aphasia (PPA) is a progressive disorder of language that is increasingly recognised as an important presentation of a specific spectrum of neurodegenerative conditions. In an era of etiologically specific treatments for neurodegenerative conditions, it is crucial to establish the histopathologic basis for PPA. In this review, I discuss biomarkers for identifying the pathology underlying PPA. Clinical syndromes suggest a probabilistic association between a specific PPA variant and an underlying pathology, but there are also many exceptions. A considerable body of work with biomarkers is now emerging as an important addition to clinical diagnosis. I review genetic, neuroimaging and biofluid studies that can help determine the pathologic basis for PPA. Together with careful clinical examination, there is great promise that supplemental biomarker assessments will lead to accurate diagnosis of the pathology associated with PPA during life and serve as the basis for clinical trials in this spectrum of disease.
    Aphasiology 09/2014; 28(8-9):922-940. DOI:10.1080/02687038.2014.929631 · 1.73 Impact Factor