Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans

Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
Sleep (Impact Factor: 5.06). 01/2008; 30(12):1643-57.
Source: PubMed

ABSTRACT The mechanisms responsible for the homeostatic decrease of slow-wave activity (SWA, defined in this study as electroencephalogram [EEG] power between 0.5 and 4.0 Hz) during sleep are unknown. In agreement with a recent hypothesis, in the first of 3 companion papers, large-scale computer simulations of the sleeping thalamocortical system showed that a decrease in cortical synaptic strength is sufficient to account for the decline in SWA. In the model, the reduction in SWA was accompanied by decreased incidence of high-amplitude slow waves, decreased wave slopes, and increased number of waves with multiple peaks. In a second companion paper in the rat, local field potential recordings during early and late sleep confirmed the predictions of the model. Here, we investigated the model's predictions in humans by using all-night high-density (hd)-EEG recordings to explore slow-wave parameters over the entire cortical mantle.
256-channel EEG recordings in humans over the course of an entire night's sleep.
Sound-attenuated sleep research room
Seven healthy male subjects
During late sleep (non-rapid eye movement [NREM] episodes 3 and 4, toward morning), when compared with early sleep (NREM sleep episodes 1 and 2, at the beginning of the night), the analysis revealed (1) reduced SWA, (2) fewer large-amplitude slow waves, (3) decreased wave slopes, (4) more frequent multipeak waves. The decrease in slope between early and late sleep was present even when waves were directly matched by wave amplitude and slow-wave power in the background EEG. Finally, hd-EEG showed that multipeak waves have multiple cortical origins.
In the human EEG, the decline of SWA during sleep is accompanied by changes in slow-wave parameters that were predicted by a computer model simulating a homeostatic reduction of cortical synaptic strength.

Download full-text


Available from: Marcello Massimini, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with major depressive disorder typically exhibit sleep electroencephalograpy abnormalities which have been shown to vary by sex. Recent research has shown that depressed males display deficits in slow wave sleep and delta electroencephalograph (EEG) activity that are not apparent in depressed females. This may suggest that males and females with depression vary with respect to their homeostatic regulation of sleep. Utilizing archival data, the present study examined the effects of a 3-h sleep delay, which represents a mild sleep challenge, on slow wave activity in healthy controls and individuals with depression. All participants slept in the laboratory for three sequential nights. On the third night in the laboratory, the participants' bedtime was delayed by 3 h. Slow wave activity was calculated utilizing power spectral analysis and compared across groups. Following the sleep delay, males with depression exhibited the lowest slow wave activity compared to all other groups. These results may suggest that males with depression are at a greater risk for homeostatic dysregulation than females, and may require specialized intervention.
    Journal of Sleep Research 08/2014; 23(6). DOI:10.1111/jsr.12174
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive transcranial magnetic stimulation (TMS) has become a popular tool to modulate neuronal networks and associated brain functions in both clinical and basic research. Yet few studies have examined the potential effects of cortical stimulation on general levels of vigilance. In this exploratory study, we used theta-burst protocols, both continuous (cTBS) and intermittent (iTBS) patterns, to examine whether inhibition or excitation of the left dorso-lateral prefrontal cortex (dlPFC) was able to induce reliable and acute changes to vigilance measures, compared to the left dorso-lateral associative visual cortex (dlAVC) as a control site in line with previous work. Partially sleep restricted participants underwent four separate sessions in a single day, in a between subjects design for TBS stimulation type and within subjects for locaton, each consisting of maintenance of wakefulness test (MWT), a sleep latency test, and a psychomotor vigilance task (PVT). TBS significantly affected measures of sleep consolidation, namely latency to sleep stage 2 and sleep efficiency, but had no effects on sleep drive or psychomotor vigilance levels for either TBS type or location. Contrary to our initial hypothesis of the dlAVC as a control site, stimulation to this region resulted in the largest differential effects between stimulation types. Moreover, the effect of TBS was found to be consistent throughout the day. These data may provide the basis for further investigation into therapeutic applications of TBS in sleep disorders.
    Frontiers in Human Neuroscience 06/2014; 8:420. DOI:10.3389/fnhum.2014.00420
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The physiologic relationship between slow-wave activity (SWA) (0-4Hz) on the electroencephalogram (EEG) and high-frequency (0.1-0.4Hz) cardiopulmonary coupling (CPC) derived from electrocardiogram (ECG) sleep spectrograms is not known. Because high-frequency CPC appears to be a biomarker of stable sleep, we tested the hypothesis that that slow-wave EEG power would show a relatively fixed-time relationship to periods of high-frequency CPC. Furthermore, we speculated that this correlation would be independent of conventional nonrapid eye movement (NREM) sleep stages. We analyzed selected datasets from an archived polysomnography (PSG) database, the Sleep Heart Health Study I (SHHS-I). We employed the cross-correlation technique to measure the degree of which 2 signals are correlated as a function of a time lag between them. Correlation analyses between high-frequency CPC and delta power (computed both as absolute and normalized values) from 3150 subjects with an apnea-hypopnea index (AHI) of ⩽5 events per hour of sleep were performed. The overall correlation (r) between delta power and high-frequency coupling (HFC) power was 0.40±0.18 (P=.001). Normalized delta power provided improved correlation relative to absolute delta power. Correlations were somewhat reduced in the second half relative to the first half of the night (r=0.45±0.20 vs r=0.34±0.23). Correlations were only affected by age in the eighth decade. There were no sex differences and only small racial or ethnic differences were noted. These results support a tight temporal relationship between slow wave power, both within and outside conventional slow wave sleep periods, and high frequency cardiopulmonary coupling, an ECG-derived biomarker of "stable" sleep. These findings raise mechanistic questions regarding the cross-system integration of neural and cardiopulmonary control during sleep.
    Sleep Medicine 10/2013; 15(1). DOI:10.1016/j.sleep.2013.10.002