Article

Three-dimensional structure of vertebrate cardiac muscle myosin filaments.

Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2008; 105(7):2386-90. DOI: 10.1073/pnas.0708912105
Source: PubMed

ABSTRACT Contraction of the heart results from interaction of the myosin and actin filaments. Cardiac myosin filaments consist of the molecular motor myosin II, the sarcomeric template protein, titin, and the cardiac modulatory protein, myosin binding protein C (MyBP-C). Inherited hypertrophic cardiomyopathy (HCM) is a disease caused mainly by mutations in these proteins. The structure of cardiac myosin filaments and the alterations caused by HCM mutations are unknown. We have used electron microscopy and image analysis to determine the three-dimensional structure of myosin filaments from wild-type mouse cardiac muscle and from a MyBP-C knockout model for HCM. Three-dimensional reconstruction of the wild-type filament reveals the conformation of the myosin heads and the organization of titin and MyBP-C at 4 nm resolution. Myosin heads appear to interact with each other intramolecularly, as in off-state smooth muscle myosin [Wendt T, Taylor D, Trybus KM, Taylor K (2001) Proc Natl Acad Sci USA 98:4361-4366], suggesting that all relaxed muscle myosin IIs may adopt this conformation. Titin domains run in an elongated strand along the filament surface, where they appear to interact with part of MyBP-C and with the myosin backbone. In the knockout filament, some of the myosin head interactions are disrupted, suggesting that MyBP-C is important for normal relaxation of the filament. These observations provide key insights into the role of the myosin filament in cardiac contraction, assembly, and disease. The techniques we have developed should be useful in studying the structural basis of other myosin-related HCM diseases.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
    Biophysical Journal 01/2015; 108(2):304-14. DOI:10.1016/j.bpj.2014.11.049 · 3.83 Impact Factor
  • Journal of Molecular Biology 11/2014; 427(2). DOI:10.1016/j.jmb.2014.11.006 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.
    Proceedings of the National Academy of Sciences 12/2014; 111(52):18763-8. DOI:10.1073/pnas.1413922112 · 9.81 Impact Factor

Full-text (2 Sources)

Download
31 Downloads
Available from
Jun 1, 2014