Is a two-step glutamate dehyrogenase antigen-cytotoxicity neutralization assay algorithm superior to the premier toxin A and B enzyme immunoassay for laboratory detection of Clostridium difficile?

Clinical Microbiology-Immunology Laboratories, UNC Hospitals, CB 7600, Chapel Hill, NC 27514, USA.
Journal of clinical microbiology (Impact Factor: 4.23). 05/2008; 46(4):1523-5. DOI: 10.1128/JCM.02100-07
Source: PubMed

ABSTRACT A two-step algorithm for the detection of Clostridium difficile by the use of C. Diff Quik Chek (TechLab, Blacksburg, VA) and a tissue culture cytotoxicity neutralization assay was found to be more sensitive than the widely used solid-phase enzyme immunoassay (EIA), the Premier toxin A and B EIA (Meridian Bioscience, Cincinnati, OH), and a newly developed, rapid single-test EIA for C. difficile toxins A and B (Tox A/B Quik Chek; TechLab).

  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile is the most common cause of nosocomial infectious diarrhea. The incidence of C difficile infection (CDI) is increasing in both inpatients and outpatients, and outbreaks caused by a hypervirulent strain of C difficile are resulting in more severe disease. Moreover, community-associated CDI is occurring in persons who lack the traditional risk factors, which include antibiotic use, advanced age, and severe underlying disease. The clinical severity of CDI ranges from a mild, self-limited diarrheal illness to a fulminant, life-threatening colitis. Enzyme-linked immunosorbent assay is the most common laboratory method used for detection of C difficile toxins and can confirm the diagnosis within several hours. The choice of treatment should be based on disease severity. Oral metronidazole is generally regarded as the treatment of choice for mild to moderate CDI, while oral vancomycin is recommended for severe disease. Timely surgical intervention is important in patients who have severe complicated CDI.
    Infections in medicine 01/2009; 26(7):211-220. · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The aim of this multicenter study was to establish a diagnostic algorithm using molecular methods for the diagnosis of C. difficile-associated infection (CDI). In addition patient specific data were taken into consideration for the interpretation of the results. Methods: We compared the performance of six different commercially available PCR-tests, two toxin immunoassays, and a glutamat-dehydrogenase test by analysing liquid stool specimens from patients with suspected CDI. Toxigenic culture on CLO-agar was used as reference method. Results: In total 250 stool specimens were collected at two study sites. 77 (30.8%) stool samples were culture-positive for toxigenic C. difficile. 173 (69.2%) specimens showed no growth of C. difficile. As a result, each of the PCR assays tested for C. difficile had a significantly higher sensitivity (94.8% - 100%) and NPV (97.6% - 100%) than the TOX-EIA with a sensitivity of 57.1% and NPV of 83.8%. Specificity of the PCR tests was 94.1% to 96.0% and PPV between 86.5% and 91.6%. The analysis of the patient data revealed a significant difference (p-value 0.0202) between toxin-positive and toxin-negative patients regarding prior antibiotic treatment, especially for cephalosporins. Conclusions: Our findings support the recommendation to restrict the use of antibiotics as a cornerstone in the prevention of CDI. We conclude that all of the PCR assays evaluated in this study can be applied in a diagnostic algorithm.
    Clinical laboratory 01/2014; 60(8):1343-50. DOI:10.7754/Clin.Lab.2013.130735 · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Clostridium difficile (CD) is considered an important cause of diarrhoea associated with the antimicrobial treatment of infections. The pathogenicity of CD is due to toxins A and B, produced by toxigenic CD strains. Methods: We evaluated 3 methods for detecting CD toxins: the RIDASCREEN® enzyme immunoassay (EIA) (R-Biopharm) – one detecting toxins directly in the stool specimens and another detecting toxins from isolated CD strains – and 2 molecular methods, the illumigene™ loop-mediated isothermal amplification (LAMP) assay (Meridian) and RIDA®GENE polymerase chain reaction (PCR) assay (R-Biopharm), as direct identification methods from stool specimens. Toxigenic culture (TC) was used as the reference method. Results: Altogether 884 stool samples were analyzed, of which 253 (29%) were positive by TC. Six hundred and seventy-two specimens were tested by RIDASCREEN EIA, 430 were tested with the illumigene LAMP assay, and 212 were tested with the RIDA GENE PCR assay. CD toxin A and B antigen tests by EIA were very insensitive, both directly from stool specimens (2 series; 57–61%) and in isolated CD strains (53%); consequently the negative predictive value remained low (84–93% and 91%, respectively). Specificity, however, was very good at 98–100%. The 2 molecular methods detected CD toxin genes excellently and equally, resulting in sensitivities, specificities, and positive and negative predictive values of 98%, 100%, 100%, and 98%, respectively. Conclusions: Both molecular assays were easy to use, rapid, sensitive, and specific for the detection of toxigenic CD strains.
    Scandinavian Journal of Infectious Diseases 12/2012; 45(1). DOI:10.3109/00365548.2012.708780 · 1.64 Impact Factor


Available from