Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
The ISME Journal (Impact Factor: 9.27). 04/2008; 2(3):233-41. DOI: 10.1038/ismej.2008.10
Source: PubMed

ABSTRACT Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metagenomic studies have revealed that ssDNA phages from the family Microviridae subfamily Gokushovirinae are widespread in aquatic ecosystems. It is hypothesized that gokushoviruses occupy specialized niches, resulting in differences among genotypes traversing water column gradients. Here, we use degenerate primers that amplify a fragment of the gene encoding the major capsid protein to examine the diversity of gokushoviruses in Saanich Inlet (SI), a seasonally anoxic fjord on the coast of Vancouver Island, BC, Canada. Amplicon sequencing of samples from the mixed oxic surface (10 m) and deeper anoxic (200 m) layers indicated a diverse assemblage of gokushoviruses, with greater richness at 10 m than 200 m. A comparison of amplicon sequences with sequences selected on the basis of RFLP patterns from eight surface samples collected over a 1-year period revealed that gokushovirus diversity was higher in spring and summer during stratification and lower in fall and winter after deep-water renewal, consistent with seasonal variability within gokushovirus populations. Our results provide persuasive evidence that, while specific gokushovirus genotypes may have a narrow host range, hosts for gokushoviruses in SI consist of a wide range of bacterial taxa. Indeed, phylogenetic analysis of clustered amplicons revealed at least five new phylogenetic groups of previously unknown sequences, with the most abundant group associated with viruses infecting SUP05, a ubiquitous and abundant member of marine oxygen minimum zones. Relatives of SUP05 dominate the anoxic SI waters where they drive coupled carbon, nitrogen, and sulfur transformations along the redoxline; thus, gokushoviruses are likely important mortality agents of these bacteria with concomittant influences on biogeochemical cycling in marine oxygen minimum zones.
    Frontiers in Microbiology 04/2015; 6:315. DOI:10.3389/fmicb.2015.00315 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used (MDA - Multiple Displacement Amplification) and one new primer-free method (pWGA - primase-based Whole Genome Amplification) were compared using a PCR-based method as control. Pyrosequencing of an environmental sample and Principal Component Analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates, and to a lesser extent for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (<1.5 kb), whereas MDA was inefficient. We conclude that pWGA is the most promising method for characterization of microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars.
    Environmental Microbiology 12/2013; DOI:10.1111/1462-2920.12365 · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although biofilms have been shown to be reservoirs of pathogens, our knowledge of the microbial diversity in biofilms within critical areas, such as health care facilities, is limited. Available methods for pathogen identification and strain typing have some inherent restrictions. In particular, culturing will yield only a fraction of the species present, PCR of virulence or marker genes is mainly focused on a handful of known species, and shotgun metagenomics is limited in the ability to detect strain variations. In this study, we present a single-cell genome sequencing approach to address these limitations and demonstrate it by specifically targeting bacterial cells within a complex biofilm from a hospital bathroom sink drain. A newly developed, automated platform was used to generate genomic DNA by the multiple displacement amplification (MDA) technique from hundreds of single cells in parallel. MDA reactions were screened and classified by 16S rRNA gene PCR sequence, which revealed a broad range of bacteria covering 25 different genera representing environmental species, human commensals, and opportunistic human pathogens. Here we focus on the recovery of a nearly complete genome representing a novel strain of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis JCVI SC001) using the single-cell assembly tool SPAdes. Single-cell genomics is becoming an accepted method to capture novel genomes, primarily in the marine and soil environments. Here we show for the first time that it also enables comparative genomic analysis of strain variation in a pathogen captured from complex biofilm samples in a healthcare facility.
    Genome Research 04/2013; DOI:10.1101/gr.150433.112 · 13.85 Impact Factor


Available from