Article

Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology.

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
The ISME Journal (Impact Factor: 9.27). 04/2008; 2(3):233-41. DOI: 10.1038/ismej.2008.10
Source: PubMed

ABSTRACT Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.

0 Bookmarks
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last 80 years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell-cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them.
    Frontiers in Cellular and Infection Microbiology 07/2014; 4:98. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon ((12)C) or stable-isotope-labeled ((13)C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the (13)C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes.
    mBio 07/2014; 5(4). · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The debris cones known as Amorphous Glacier and Boulder Clay are located in an ice-free region in Northern Victoria Land, Antarctica, and differ in their isotopic composition, mechanisms of ice distribution, geological formation and age. However, to date it is not known if bacterial community profiles within ice and permafrost can be established for these environments, and then whether glaciological differences between the two areas would be reflected in the bacterial community composition. In order to gather first evidence for the bacterial communities in these glacial zones, we carried out terminal-restriction fragment length polymorphism (T-RFLP) analysis on the 16S rRNA gene using a universal bacterial amplification protocol on two permafrost cores. The DNA yields from ice-core samples ranged from 0.29 ng μL-1 in Amorphous Glacier to 88 ng μL-1 in Boulder Clay. Bray-Curtis cluster analysis suggested Boulder Clay bacterial profiles were similar to each other, but cluster separately from the Amorphous Glacier bacterial profile. Copyright © 2012 John Wiley & Sons, Ltd.
    Permafrost and Periglacial Processes 07/2012; 23(3). · 3.05 Impact Factor

Preview

Download
0 Downloads
Available from