Susceptibility of Canada Geese (Branta canadensis) to highly pathogenic avian influenza virus (H5N1).

Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada.
Emerging infectious diseases (Impact Factor: 5.99). 01/2008; 13(12):1821-7. DOI: 10.3201/eid1312.070502
Source: PubMed

ABSTRACT Migratory birds have been implicated in the long-range spread of highly pathogenic avian influenza (HPAI) A virus (H5N1) from Asia to Europe and Africa. Although sampling of healthy wild birds representing a large number of species has not identified possible carriers of influenza virus (H5N1) into Europe, surveillance of dead and sick birds has demonstrated mute (Cygnus olor) and whooper (C. cygnus) swans as potential sentinels. Because of concerns that migratory birds could spread H5N1 subtype to the Western Hemisphere and lead to its establishment within free-living avian populations, experimental studies have addressed the susceptibility of several indigenous North American duck and gull species. We examined the susceptibility of Canada geese (Branta canadensis) to HPAI virus (H5N1). Large populations of this species can be found in periagricultural and periurban settings and thus may be of potential epidemiologic importance if H5N1 subtype were to establish itself in North American wild bird populations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent outbreaks of highly pathogenic avian influenza (HPAI) in poultry have raised interest in the interplay between avian influenza (AI) viruses and their wild hosts. Studies linking virus ecology to host ecology are still scarce, particularly for non-duck species. Here, we link capture-resighting data of greater white-fronted geese Anser albifrons albifrons with the AI virus infection data collected during capture in The Netherlands in four consecutive winters. We ask what factors are related to AI virus prevalence and whether there are ecological consequences associated with AI virus infection in staging white-fronted geese. Mean seasonal (low pathogenic) AI virus prevalence ranged between 2.5 and 10.7 per cent, among the highest reported values for non-duck species, and occurred in distinct peaks with near-zero prevalence before and after. Throat samples had a 2.4 times higher detection frequency than cloacal samples. AI virus infection was significantly related to age and body mass in some but not other winters. AI virus infection was not related to resighting probability, nor to maximum distance travelled, which was at least 191 km during the short infectious lifespan of an AI virus. Our results suggest that transmission via the respiratory route could be an important transmission route of AI virus in this species. Near-zero prevalence upon arrival on their wintering grounds, in combination with the epidemic nature of AI virus infections in white-fronted geese, suggests that white-fronted geese are not likely to disperse Asian AI viruses from their Siberian breeding grounds to their European wintering areas.
    Proceedings of the Royal Society B: Biological Sciences 03/2010; 277(1690):2041-8. · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.
    Animal Health Research Reviews 06/2010; 11(1):35-41.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the winter of 2010-2011, an outbreak of highly pathogenic avian influenza virus (HPAIV) infection occurred in wild and domestic birds in Japan. Tufted ducks were found dead in an urban area of Toyota City, Koriyama, Fukushima Prefecture. Two tufted ducks were examined histopathologically, immunohistochemically and molecularly. Gross findings included marked dark-red clotted blood in the pectoral muscles and multifocal hemorrhages on the serous membranes. Microscopically, non-suppurative meningoencephalitis, multifocal to coalescing pancreatic necrosis and severe pulmonary congestion were observed. HPAIV antigen was detected in the malacic areas, neuronal, glial and ependymal cells, pulmonary capillary endothelial cells and epithelium of pulmonary bronchioles, necrotic pancreatic acini and degenerated cardiac myocytes. The HPAIV isolate was genetically classified into clade group A. The broad distribution of virus antigen in brain and pulmonary tissues associated with HPAIV spontaneous infection in tufted ducks might be useful in understanding its pathogenesis in nature.
    Journal of Veterinary Medical Science 05/2014; · 0.88 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014