Transient infection of freshly isolated human colorectal tumor cells by reovirus T3D intermediate subviral particles.

Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
Cancer gene therapy (Impact Factor: 2.55). 06/2008; 15(5):284-92. DOI: 10.1038/cgt.2008.2
Source: PubMed

ABSTRACT Reovirus T3D preferentially kills tumor cells expressing Ras oncogenes and has shown great promise as an anticancer agent in various preclinical tumor models. Here, we investigated whether reovirus can infect and kill tumor cell cultures and tissue fragments isolated from resected human colorectal tumors, and whether this was affected by the presence of endogenous oncogenic KRAS. Tissue fragments and single-cell populations isolated from human colorectal tumor biopsies were infected with reovirus virions or with intermediate subviral particles (ISVPs). Reovirus virions were capable of infecting neither single-cell tumor cell populations nor small fragments of intact viable tumor tissue. However, infection of tumor cells with ISVPs resulted in transient viral protein synthesis, irrespective of the presence of oncogenic KRAS, but this did not lead to the production of infectious virus particles, and tumor cell viability was largely unaffected. ISVPs failed to infect intact tissue fragments. Thermolysin treatment of tumor tissue liberated single cells from the tissue and allowed infection with ISVPs, but this did not result in the production of infectious virus particles. Immunohistochemistry on tissue microarrays showed that junction adhesion molecule 1, the major cellular reovirus receptor, was improperly localized in the cytoplasm of colorectal tumor cells and was expressed at very low levels in liver metastases. This may contribute to the observed resistance of tumor cells to reovirus T3D virions. We conclude that infection of human colorectal tumor cells by reovirus T3D requires processing of virions to ISVPs, but that oncolysis is prevented by a tumor cell response that aborts viral protein synthesis and the generation of infectious viral particles, irrespective of KRAS mutation status.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the canonical pathway, infection of cells by the wild-type mammalian orthoreovirus Type 3 Dearing (T3D) is dependent on the interaction of the viral spike protein σ1 with the high-affinity cellular receptor junction adhesion molecule-A (JAM-A). We previously demonstrated that the human glioblastoma cell line U-118 MG does not express JAM-A and resists reovirus T3D infection in standard cell culture conditions (SCCC). Heterologous JAM-A expression sensitises U-118 MG cells to reovirus T3D. Here we studied reovirus infection in U-118 MG cells grown in spheroid cultures with the premise that cells in such cultures resemble cells in tumours more than those grown under standard adherent cell culture conditions on a plastic surface. Although the U-118 MG cells in spheroids do not express JAM-A, they are susceptible to reovirus T3D infection. We show that this can be attributed to factors secreted by cells in the spheroids. The concentration of active extracellular proteases cathepsin B and L in the medium of spheroid cultures was increased 19- and 24-fold, respectively, as compared with SCCC. These enzymes can convert the reovirus particles into a form that can infect the U-118 MG cells independent of JAM-A. Taken together, these data demonstrate that infection of tumour cells by wild-type reovirus T3D is not strictly dependent on the expression of JAM-A on the cell surface.Gene Therapy advance online publication, 17 April 2014; doi:10.1038/gt.2014.34.
    Gene therapy 04/2014; DOI:10.1038/gt.2014.34 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The usage of reovirus has reached phase II and III clinical trials in human cancers. However, this is the first study to report the oncolytic effects of reovirus in veterinary oncology, focusing on canine mast cell tumor (MCT), the most common cutaneous tumor in dogs. As human and canine cancers share many similarities, we hypothesized that the oncolytic effects of reovirus can be exploited in canine cancers. The objective of this study was to determine the oncolytic effects of reovirus in canine MCT in vitro, in vivo and ex vivo. We demonstrated that MCT cell lines were highly susceptible to reovirus as indicated by marked cell death, high production of progeny virus and virus replication. Reovirus induced apoptosis in the canine MCT cell lines with no correlation to their Ras activation status. In vivo studies were conducted using unilateral and bilateral subcutaneous MCT xenograft models with a single intratumoral reovirus treatment and apparent reduction of tumor mass was exhibited. Furthermore, cell death was induced by reovirus in primary canine MCT samples in vitro. However, canine and murine bone marrow-derived mast cells (BMCMC) were also susceptible to reovirus. The combination of these results supports the potential value of reovirus as a therapy in canine MCT but warrants further investigation on the determinants of reovirus susceptibility.
    PLoS ONE 09/2013; 8(9):e73555. DOI:10.1371/journal.pone.0073555 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant. In the present study, an increased ability of the virus to bind at the Vero cell surface was observed and is likely associated with an increased ability to bind onto cell-surface sialic acid residues. In addition, the kinetics of μ1 disassembly from the virions appears to be altered. The plasmid-based reverse genetics approach confirmed the importance of σ1 amino acids substitutions in VeroAV's ability to efficiently infect Vero cells, although μ1 co-adaptation appears necessary to optimize viral infection. This approach of combining in vitro selection of reoviruses with reverse genetics to identify pertinent amino acids substitutions appears promising in the context of eventual reovirus modification to increase its potential as an oncolytic virus. Copyright © 2014 Elsevier B.V. All rights reserved.
    Virus Research 11/2014; 196C:20-29. DOI:10.1016/j.virusres.2014.11.002 · 2.83 Impact Factor