Article

Transient infection of freshly isolated human colorectal tumor cells by reovirus T3D intermediate subviral particles

Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
Cancer gene therapy (Impact Factor: 2.55). 06/2008; 15(5):284-92. DOI: 10.1038/cgt.2008.2
Source: PubMed

ABSTRACT Reovirus T3D preferentially kills tumor cells expressing Ras oncogenes and has shown great promise as an anticancer agent in various preclinical tumor models. Here, we investigated whether reovirus can infect and kill tumor cell cultures and tissue fragments isolated from resected human colorectal tumors, and whether this was affected by the presence of endogenous oncogenic KRAS. Tissue fragments and single-cell populations isolated from human colorectal tumor biopsies were infected with reovirus virions or with intermediate subviral particles (ISVPs). Reovirus virions were capable of infecting neither single-cell tumor cell populations nor small fragments of intact viable tumor tissue. However, infection of tumor cells with ISVPs resulted in transient viral protein synthesis, irrespective of the presence of oncogenic KRAS, but this did not lead to the production of infectious virus particles, and tumor cell viability was largely unaffected. ISVPs failed to infect intact tissue fragments. Thermolysin treatment of tumor tissue liberated single cells from the tissue and allowed infection with ISVPs, but this did not result in the production of infectious virus particles. Immunohistochemistry on tissue microarrays showed that junction adhesion molecule 1, the major cellular reovirus receptor, was improperly localized in the cytoplasm of colorectal tumor cells and was expressed at very low levels in liver metastases. This may contribute to the observed resistance of tumor cells to reovirus T3D virions. We conclude that infection of human colorectal tumor cells by reovirus T3D requires processing of virions to ISVPs, but that oncolysis is prevented by a tumor cell response that aborts viral protein synthesis and the generation of infectious viral particles, irrespective of KRAS mutation status.

0 Followers
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.
    Gene therapy 12/2008; 15(24):1567-78. DOI:10.1038/gt.2008.118
  • Source
    Cancer Gene Therapy 04/2009; 16(4):382. DOI:10.1038/cgt.2008.84
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reovirus is a naturally occurring oncolytic virus in clinical trials. Although tumor infection by reovirus can generate adaptive antitumor immunity, its therapeutic importance versus direct viral oncolysis is undefined. This study addresses the requirement for viral oncolysis and replication, and the relative importance of antitumor immunity and direct oncolysis in therapy. Nonantigen specific T cells loaded with reovirus were delivered i.v. to C57BL/6 and severe combined immunodeficient mice bearing lymph node and splenic metastases from the murine melanoma, B16ova, with assessment of viral replication, metastatic clearance by tumor colony outgrowth, and immune priming. Human cytotoxic lymphocyte priming assays were done with dendritic cells loaded with Mel888 cells before the addition of reovirus. B16ova was resistant to direct oncolysis in vitro, and failed to support reovirus replication in vitro or in vivo. Nevertheless, reovirus purged lymph node and splenic metastases in C57BL/6 mice and generated antitumor immunity. In contrast, reovirus failed to reduce tumor burden in severe combined immunodeficient mice bearing either B16ova or reovirus-sensitive B16tk metastases. In the human system, reovirus acted solely as an adjuvant when added to dendritic cells already loaded with Mel888, supporting priming of specific antitumor cytotoxic lymphocyte, in the absence of significant direct tumor oncolysis; UV-treated nonreplicating reovirus was similarly immunogenic. The immune response is critical in mediating the efficacy of reovirus, and does not depend upon direct viral oncolysis or replication. The findings are of direct relevance to fulfilling the potential of this novel anticancer agent.
    Clinical Cancer Research 07/2009; 15(13):4374-81. DOI:10.1158/1078-0432.CCR-09-0334
Show more