Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol

Dept. of Biomedical Engineering, Psychology A, 3rd Floor, State Univ. of New York at Stony Brook, Stony Brook, NY 11794-2580, USA.
Journal of Applied Physiology (Impact Factor: 3.06). 04/2008; 104(4):1056-62. DOI: 10.1152/japplphysiol.00764.2007
Source: PubMed


Mechanical signals are recognized as anabolic to both bone and muscle, but the specific parameters that are critical to this stimulus remain unknown. Here we examined the potential of extremely low-magnitude, high-frequency mechanical stimuli to enhance the quality of the adolescent musculoskeletal system. Eight-week-old female BALB/cByJ mice were divided into three groups: baseline controls (BC, n = 8), age-matched controls (AC, n = 12), and whole body vibration (WBV, n = 12) at 45 Hz (0.3 g) for 15 min/day. Following 6 wk of WBV, bone mineralizing surfaces of trabeculae in the proximal metaphysis of the tibia were 75% greater (P < 0.05) than AC, while osteoclast activity was not significantly different. The tibial metaphysis of WBV mice had 14% greater trabecular bone volume (P < 0.05) than AC, while periosteal bone area, bone marrow area, cortical bone area, and the moments of inertia of this region were all significantly greater (up to 29%, P < 0.05). The soleus muscle also realized gains by WBV, with total cross-sectional area as well as type I and type II fiber area as much as 29% greater (P < 0.05) in mice that received the vibratory mechanical stimulus. The small magnitude and brief application of the noninvasive intervention emphasize that the mechanosensitive elements of the musculoskeletal system are not necessarily dependent on strenuous, long-term activity to initiate a structurally relevant response in the adolescent musculoskeletal system. If maintained into adulthood, the beneficial structural changes in trabecular bone, cortical bone, and muscle may serve to decrease the incidence of osteoporotic fractures and sarcopenia later in life.

Download full-text


Available from: Clinton Rubin, Oct 03, 2015
24 Reads
  • Source
    • "The overall efficacy of low intensity vibration to improve muscle function in humans remains controversial [23], [24], with various reports of beneficial effects [21], [22], [25], [26], [27] and those reporting lack of alterations [28], [29]. Few studies have used mouse models to investigate vibration and skeletal muscle and those reports are also inconsistent in regard to effects on muscle size [30], [41], [49], [50]. The vibration training protocol used in the present study did not improve muscle size or strength in mdx or wildtype mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.
    PLoS ONE 08/2014; 9(8):e104339. DOI:10.1371/journal.pone.0104339 · 3.23 Impact Factor
  • Source
    • "Also, physiological adaptations are much debated. Experimental studies in mice also provide some evidence for muscular adaptation and muscle hypertrophy after vibration [38]. By activating muscle spindles WBV could stimulate alpha motor neurons and promote stretch reflexes [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001), a WBV use effect (p<0.001) and a discipline effect (p<0.001). Significantly greater improvements in the SJ (p<0.001) and CMJ (p<0.001) and in 1RM (p<0.001) were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind) were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively). It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players.
    Biology of Sport 08/2014; 31(3):239-45. DOI:10.5604/20831862.1112435 · 0.79 Impact Factor
  • Source
    • "For many years, the dynamic delivery of high stress to bone was considered the primary mechanical method to up-regulate osteogenesis [13-15]. However, more recently, low amplitude vibration stimuli, in the absence of high mechanical loads, were equally effective at up-regulating bone development in mice [5,16-19]. Indeed, regular mechanical stress promotes a healthy environment for bone [1], fat [2,3], skeletal muscle [4,5], nerve tissue [6], and cartilage (articular, menisci) [20,21] in animal or reduced preparations in the laboratory. Translating these findings into human studies has been hampered by the lack of a capacity to dynamically deliver high passive loads and/or low vibration either independently or in various combinations with or without muscle activation (electrically or volitionally). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mechanical loads induced through muscle contraction, vibration, or compressive forces are thought to modulate tissue plasticity. With the emergence of regenerative medicine, there is a need to understand the optimal mechanical environment (vibration, load, or muscle force) that promotes cellular health. To our knowledge no mechanical system has been proposed to deliver these isolated mechanical stimuli in human tissue. We present the design, performance, and utilization of a new technology that may be used to study localized mechanical stimuli on human tissues. A servo-controlled vibration and limb loading system were developed and integrated into a single instrument to deliver vibration, compression, or muscle contractile loads to a single limb (tibia) in humans. The accuracy, repeatability, transmissibility, and safety of the mechanical delivery system were evaluated on eight individuals with spinal cord injury (SCI). Findings The limb loading system was linear, repeatable, and accurate to less than 5, 1, and 1 percent of full scale, respectively, and transmissibility was excellent. The between session tests on individuals with spinal cord injury (SCI) showed high intra-class correlations (>0.9). Conclusions All tests supported that therapeutic loads can be delivered to a lower limb (tibia) in a safe, accurate, and measureable manner. Future collaborations between engineers and cellular physiologists will be important as research programs strive to determine the optimal mechanical environment for developing cells and tissues in humans.
    BMC Research Notes 06/2014; 7(1):334. DOI:10.1186/1756-0500-7-334
Show more