Article

Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study1-3

Department of Nutrition Science-Dietetics, Harokopio University, Athens, Greece.
American Journal of Clinical Nutrition (Impact Factor: 6.92). 02/2008; 87(2):424-30.
Source: PubMed

ABSTRACT Choline and betaine are found in a variety of plant and animal foods and were recently shown to be associated with decreased homocysteine concentrations.
The scope of this work was to investigate the associations between dietary choline and betaine consumption and various markers of low-grade systemic inflammation.
Under the context of a cross-sectional survey that enrolled 1514 men (18-87 y of age) and 1528 women (18-89 y of age) with no history of cardiovascular disease (the ATTICA Study), fasting blood samples were collected and inflammatory markers were measured. Dietary habits were evaluated with a validated food-frequency questionnaire, and the intakes of choline and betaine were calculated from food-composition tables.
Compared with the lowest tertile of choline intake (<250 mg/d), participants who consumed >310 mg/d had, on average, 22% lower concentrations of C-reactive protein (P < 0.05), 26% lower concentrations of interleukin-6 (P < 0.05), and 6% lower concentrations of tumor necrosis factor-alpha (P < 0.01). Similarly, participants who consumed >360 mg/d of betaine had, on average, 10% lower concentrations of homocysteine (P < 0.01), 19% lower concentrations of C-reactive protein (P < 0.1), and 12% lower concentrations of tumor necrosis factor-alpha (P < 0.05) than did those who consumed <260 mg/d. These findings were independent of various sociodemographic, lifestyle, and clinical characteristics of the participants.
Our results support an association between choline and betaine intakes and the inflammation process in free-eating and apparently healthy adults. However, further studies are needed to confirm or refute our findings.

0 Followers
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the large community-based Hordaland Health Study, low plasma dimethylglycine was associated with low bone mineral density in both middle-aged and elderly subjects and to an increased risk of subsequent hip fracture among the elderly. These associations seemed to be particularly strong among subjects exposed to nicotine. INTRODUCTION: Dimethylglycine (DMG) is a product of the choline oxidation pathway and formed from betaine during the folate-independent remethylation of homocysteine (Hcy) to methionine. Elevated plasma DMG levels are associated with atherosclerotic cardiovascular disease and inflammation, which in turn are related to osteoporosis. High plasma total Hcy and low plasma choline are associated with low bone mineral density (BMD) and hip fractures, but the role of plasma DMG in bone health is unknown. METHODS: We studied the associations of plasma DMG with BMD among 5315 participants (46-49 and 71-74 years old) and with hip fracture among 3310 participants (71-74 years old) enrolled in the Hordaland Health Study. RESULTS: In age and sex-adjusted logistic regression models, subjects in the lowest versus highest DMG tertile were more likely to have low BMD (odds ratio [OR] 1.68, 95 % confidence interval [CI] 1.43-1.99). The association was stronger in participants exposed compared to those unexposed to nicotine (OR 2.31, 95 % CI 1.73-3.07 and OR 1.43, 95 % CI 1.16-1.75, respectively, p interaction = 0.008). In the older cohort, Cox regression analyses adjusted for sex showed that low plasma DMG was associated with an increased risk of hip fracture (hazard ratio [HR] 1.70, 95 % CI 1.28-2.26). A trend toward an even higher risk was found among women exposed to nicotine (HR 3.41, 95 % CI 1.40-8.28). CONCLUSION: Low plasma DMG was associated with low BMD and increased risk of hip fractures. A potential effect modification by nicotine exposure merits particular attention.
    Osteoporosis International 05/2015; 26(5). DOI:10.1007/s00198-015-3030-4 · 4.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin is one of the most potent chemotherapeutic antitumor drugs used in the treatment of a wide range of solid tumors. Its primary dose-limiting side effect is nephrotoxicity. This study aims to investigate the effect of betaine supplementation on cisplatin-induced nephrotoxicity. A single intraperitoneal injection of cisplatin (5mg/kg) deteriorated the kidney functions as reflected by elevated blood urea nitrogen and serum creatinine levels. Oxidative/nitrosative stress was evident in cisplatin group by increased renal thiobarbituric acid-reactive substances (TBARS), an indicator of lipid peroxidation, reduced renal total antioxidant status and increased renal nitrite concentration. Cisplatin resulted in a decline in the concentrations of reduced glutathione, glutathione peroxidase, catalase, and superoxide dismutase in renal tissues. Renal tumor necrosis factor-α (TNF-α) was also elevated. Expressions of nuclear factor-kappa B (NF-κB) and caspase-3 were up-regulated in renal tissues as indicated by immunohistochemical analysis. Histopathological changes were observed in cisplatin group. Betaine supplementation (250mg/kg/day) orally via gavage for 21 days prior to cisplatin injection was able to protect against deterioration in kidney function, abrogate the decline in antioxidants enzymes and suppressed the increase in TBARS, nitrite and TNF-α concentrations. Moreover, betaine inhibited NF-κB and caspase-3 activation and improved the histological changes induced by cisplatin. Thus, the present study demonstrated the renoprotective nature of betaine by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in kidney tissues of cisplatin treated rats. Betaine could be a beneficial dietary supplement to attenuate cisplatin nephrotoxicity. Copyright © 2014. Published by Elsevier GmbH.
    Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie 12/2014; 67(2). DOI:10.1016/j.etp.2014.11.001 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides an overview of the current literature and scientific evidence surrounding inorganic nitrate (NO3-) supplementation and its potential for improving human health and physical performance. As indicative of the ever-expanding organic and natural food consumer market, athletes and health enthusiasts alike are constantly searching for ingredient-specific "super foods" and dietary supplements capable of eliciting health and performance benefits. Evidence suggests that NO3- is the viable active component within beetroot juice (BRJ) and other vegetables, responsible for health-promoting and ergogenic effects. Indeed, multiple studies support NO3- supplementation as an effective method to improve exercise performance. NO3- supplementation (either as BRJ or sodium nitrate [NaNO3-]) has also demonstrated modest benefits pertaining to cardiovascular health, such as reducing blood pressure (BP), enhancing blood flow, and elevating the driving pressure of O2 in the microcirculation to areas of hypoxia or exercising tissue. These findings are important to cardiovascular medicine/exercise physiology and suggest a possible role for NO3- supplementation: (1) as a low-cost prevention and treatment intervention for patients suffering from blood flow disorders; and (2) an effective, natural ergogenic aid for athletes. Benefits have been noted following a single bolus, as well as daily supplementation of NO3-. While results are promising, additional research is needed to determine the impact of NO3- supplementation on anaerobic exercise performance, to identify principle relationships between isolated nitrate and other ingredients found in nitrate-rich vegetables (e.g., vitamin C, polyphenols, fatty acids, thiocyanate), to explore the specific dose-response relationships needed to elicit health and ergogenic benefits, to prolong the supplementation period beyond a relatively short period (i.e., >15 days), to determine if more robust effects can be observed with longer-term treatment, and to fully examine the safety of chronic NO3- supplementation, as this continues to be a concern of some.
    Nutrients 11/2014; 6(11):5224-5264. DOI:10.3390/nu6115224 · 3.15 Impact Factor

Full-text (2 Sources)

Download
3 Downloads
Available from
May 27, 2014