Outside inside signalling in CD40-mediated B cell activation.

Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, Udine, Italy.
Journal of biological regulators and homeostatic agents (Impact Factor: 5.18). 02/2007; 21(3-4):49-62.
Source: PubMed

ABSTRACT CD40 is a member of the growing tumor necrosis factor receptor (TNF-R) family of molecules, and has been shown to play important roles in T cell-mediated B lymphocyte activation. Ligation of B cell CD40 by CD154 expressed on activated T cells stimulates B cell proliferation, differentiation, isotype switching, upregulation of surface molecules contributing to antigen presentation, development of the germinal center, and the humoral memory response. The present review will summarize recent literature data on the various CD40 signalling pathways, which involve both the TNF-R associated factors (TRAFs) and additional signalling proteins, and lead to activation of kinases and transcription factors.

0 0
1 Bookmark
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: c-Src is the normal human cellular protein homologue of the viral oncogene v-src. c-Src activity was reported recently to increase in CD40-activated human B lymphocytes, suggesting its involvement in proliferation. To elucidate the exact role of c-Src in this process, we investigated the effects of c-Src over-expression on normal B lymphocyte growth. B lymphocytes purified from human peripheral blood were infected with Ad5/F35 vector encoding either a constitutively active c-Src (c-Src/dominant-positive) or a dominant-negative c-Src (c-Src/DN). Little variation of B lymphocytes expansion could be observed between control enhanced yellow fluorescent protein and c-Src/dominant-positive-infected cells. In contrast, over-expression of c-Src/DN results in a 40% inhibition of B lymphocyte expansion. These results suggest that DN c-Src may compete with endogenous c-Src, resulting in partial inhibition of a transcriptional pathway involved in B lymphocyte proliferation. We demonstrate further that c-Src can phosphorylate signal transducer and activator of transcription 5b (STAT5b) on tyrosine 699 and that c-Src and STAT5b co-associate during B lymphocyte proliferation. These results confirm an important role for c-Src in the expansion of normal human B lymphocytes in vitro, in which c-Src may regulate STAT5b in the intracellular signalling pathway important for the proliferation of normal human B lymphocytes.
    Clinical & Experimental Immunology 07/2009; 156(3):419-27. · 3.41 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Chemokines are centrally involved in leukocyte migration, homing and haematopoiesis. Besides these physiological aspects, their role in pathological processes especially with respect to solid tumour and haematological neoplasias is well established. In this context, the focus was set here on disclosing their contribution in B cell chronic lymphocytic leukaemia (B-CLL), which is regarded as the most characteristic low-grade lymphoma. Up to now, it has been demonstrated that several chemokines are involved in migration of B-CLL cells to lymph nodes, secondary lymphoid organs and bone marrow. Moreover, some chemokines are known to have an anti-apoptotic effect and thus contribute to the survival of B-CLL cells. By interfering with both of these aspects, new therapeutic targets for this yet incurable disease may be developed. Furthermore, a correlation can be drawn between the concentration of some chemokines in patients' serum, the expression of their respective receptors on B-CLL cells and well-established predictive clinical parameters. Consequently, further systematic investigation of the chemokine network may lead to the identification of new diagnostic and prognostic markers. This review focuses on the impact of chemokines and their receptors on B-CLL pathophysiology and points out potential implications for both treatment and diagnosis.
    Annals of Hematology 12/2009; 89(5):437-46. · 2.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: System lupus erythematosus (SLE) is an immune-complex-mediated autoimmune condition with protean immunological and clinical manifestation. While SLE has classically been advocated as a B-cell or T-cell disease, it is unlikely that a particular cell type is more pathologically predominant than the others. Indeed, SLE is characterized by an orchestrated interplay amongst different types of immunopathologically important cells participating in both innate and adaptive immunity including the dendritic cells, macrophages, neutrophils and lymphocytes, as well as traditional nonimmune cells such as endothelial, epithelial, and renal tubular cells. Amongst the antigen-presenting cells and lymphocytes, and between lymphocytes, the costimulatory pathways which involve mutual exchange of information and signalling play an essential role in initiating, perpetuating, and, eventually, attenuating the proinflammatory immune response. In this review, advances in the knowledge of established costimulatory pathways such as CD28/CTLA-4-CD80/86, ICOS-B7RP1, CD70-CD27, OX40-OX40L, and CD137-CD137L as well as their potential roles involved in the pathophysiology of SLE will be discussed. Attempts to target these costimulatory pathways therapeutically will pave more potential treatment avenues for patients with SLE. Preliminary laboratory and clinical evidence of the potential therapeutic value of manipulating these costimulatory pathways in SLE will also be discussed in this review.
    Clinical and Developmental Immunology 01/2013; 2013:245928. · 3.06 Impact Factor