Article

The RAST Server: rapid annotations using subsystems technology.

Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA.
BMC Genomics (Impact Factor: 4.04). 02/2008; 9:75. DOI: 10.1186/1471-2164-9-75
Source: PubMed

ABSTRACT The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them.
We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12-24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service.
By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.

1 Bookmark
 · 
356 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus capitis is an emerging opportunistic pathogen of humans, and found as a colonizer of the human gut. Here, we report a case of S. capitis subsp. urealyticus infection. The strain LNZR-1 was isolated from the blood culture of a patient with sigmoid colon cancer. It was found to be resistant to some important antibiotics, such as linezolid, a highly effective antimicrobial against clinically important Staphylococci pathogens. However, data on the genetic resistance mechanisms in S. capitis subsp. urealyticus are only sparsely available. The draft genome of S. capitis subsp. urealyticus strain LNZR-1 was sequenced by using next-generation sequencing technologies. Sequence data assembly revealed a genome size of 2,595,865 bp with a G + C content of 32.67%. Genome annotation revealed the presence of antibiotic resistance genes conferring resistance against some of the tested antibiotics as well as non-tested antibiotics. The genome also possesses a lot of genes that may be related to multidrug resistance. Whole genome comparison of the LNZR-1 with five other S. capitis strains showed that some functional regions are highly homologous between the six assemblies made herein. The LNZR-1 genome has high similarity with the genomes of the strains VCU116 and CR01, although some short stretches present in the genomes of strains VCU116 and CR01 were absent in the strain LNZR-1. The presence of a plethora of genes responsible for antibiotic resistance suggests that strain LNZR-1 could present a potential threat to human health. The comparative genomic analysis of S. capitis strains presented in this study is important for better understanding of multidrug resistance in S. capitis.
    Gut Pathogens 01/2014; 6(1):45. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kurthia senegalensis strain JC8E(T) sp. nov. is the type strain of K. senegalensis sp. nov., a new species within the genus Kurthia. This strain, whose genome is described here, was isolated from the fecal flora of a healthy patient. K. senegalensis is an aerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,975,103 bp long genome contains 2,889 protein-coding genes and 83 RNA genes, including between 4 and 6 rRNA genes.
    Standards in Genomic Sciences 02/2014; 20(9):1319-30. · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here the whole-genome sequences of Listeria monocytogenes from Ganges River water, agricultural soil, and human clinical samples from Varanasi, India, which will be used for a comparative analysis. Copyright © 2015 Soni et al.
    Genome Announcements 01/2015; 3(1).

Full-text (2 Sources)

Download
99 Downloads