Article

Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode.

Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA 15212, USA.
Physics in Medicine and Biology (Impact Factor: 2.7). 03/2008; 53(4):823-36. DOI:10.1088/0031-9155/53/4/001
Source: PubMed

ABSTRACT Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.

0 0
 · 
0 Bookmarks
 · 
54 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This paper presents a novel method for respiratory motion compensated reconstruction for cone beam computed tomography (CBCT). The reconstruction is based on a time sequence of motion vector fields, which is generated by a dynamic geometrical object shape model. The dynamic model is extracted from the 2D projection images of the CBCT. The process of the motion extraction is converted into an optimal 3D multiple interrelated surface detection problem, which can be solved by computing a maximum flow in a 4D directed graph. The method was tested on 12 mega-voltage (MV) CBCT scans from three patients. Two sets of motion-artifact-free 3D volumes, full exhale (FE) and full inhale (FI) phases, were reconstructed for each daily scan. The reconstruction was compared with three other motion-compensated approaches based on quantification accuracy of motion and size. Contrast to noise ratio (CNR) was also quantified for image quality. The proposed approach has the best overall performance, with a relative tumor volume quantification error of 3.39±3.64% and 8.57±8.31% for FE and FI phases, respectively. The CNR near the tumor area is 3.85±0.42 (FE) and 3.58±3.33 (FI). These results show the clinical feasibility to use the proposed method to reconstruct motion-artifact-free MVCBCT volumes.
    IEEE transactions on medical imaging. 12/2012;
  • [show abstract] [hide abstract]
    ABSTRACT: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp∕mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.
    Medical Physics 08/2012; 39(8):4812-9. · 2.91 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Airway disease such as tumours and asthma lead to lung injuries. Therefore, a better understanding of airway mechanics parameters is very important to avoid lung injuries in patients undergoing mechanical ventilation for treatment of respiratory problems in intensive-care medicine as well as pulmonary medicine. The objective of this study was to investigate the role of airway diseases such as asthma and tumours on airway mechanics parameters using coupled fluid-solid computational analysis. The results obtained indicate that both tumours and asthma greatly affect the airway mechanics parameters (airflow velocity increased by about 15% and the strains increased by about 40%). Strain results of this study highlight significant changes in levels of airway parameters, which may translate into higher health risk associated with airway tumours and the asthmatic airways. These results combined with optimization suggest that it is possible to develop mechanical ventilation protocols to avoid lung injuries in patients.
    Journal of Medical Engineering & Technology 07/2012; 36(7):338-43.

B. Reitz