CDK Inhibitors: Cell Cycle Regulators and Beyond

Université de Toulouse - LBCMCP and CNRS - UMR5088, Toulouse, France.
Developmental Cell (Impact Factor: 10.37). 03/2008; 14(2):159-69. DOI: 10.1016/j.devcel.2008.01.013
Source: PubMed

ABSTRACT First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1, p27Kip1, and p57Kip2 have emerged as multifaceted proteins with functions beyond cell cycle regulation. In addition to regulating the cell cycle, Cip/Kip proteins play important roles in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. A complex phosphorylation network modulates Cip/Kip protein functions by altering their subcellular localization, protein-protein interactions, and stability. These functions are essential for the maintenance of normal cell and tissue homeostasis, in processes ranging from embryonic development to tumor suppression.


Available from: James M Roberts, Dec 17, 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to environmental teratogenic pollutant leads to severe birth defects. However, the biological events underlying these developmental abnormalities remain undefined. Here, we report a molecular link between an environmental stress response pathway and key developmental genes during craniofacial development. Strikingly, mutant mice with impaired Pax3/7 function display severe craniofacial defects. We show that these are associated with an upregulation of the signaling pathway mediated by the Aryl hydrocarbon receptor (AHR), the receptor to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), revealing a genetic interaction between Pax3 and AHR signaling. Activation of AHR signaling in Pax3-deficient embryos drives facial mesenchymal cells out of the cell cycle through the upregulation of p21 expression. Accordingly, inhibiting AHR activity rescues the cycling status of these cells and the facial closure of Pax3/7 mutants. Together, our findings demonstrate that the regulation of AHR signaling by Pax3/7 is required to protect against TCDD/AHR-mediated teratogenesis during craniofacial development. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 03/2015; 33(1). DOI:10.1016/j.devcel.2015.02.006 · 10.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with an important role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.
    03/2015; 7(2):300-314. DOI:10.4252/wjsc.v7.i2.300
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA-191 (miR-191), a small non-coding RNA, is involved in disease development and cancer diagnosis and prognosis. However, how miR-191 functions in colorectal cancer remains largely unclear. In this study, we show that miR-191 is highly expressed in colon tumor tissues, and that inhibition of miR-191 leads to decreased cell growth, proliferation and tumorigenicity in a xenograft model. Overexpression of miR-191 in colorectal cancer cell lines alters cell cycle progression and cell resistance to 5-Fu induced cell apoptosis. Mechanistic studies demonstrated that miR-191 directly binds to the 3'UTR of the C/EBPβ mRNA and mediates a decrease in the mRNA and protein expression of C/EBPβ. We further showed that C/EBPβ induces growth arrest in a colorectal cancer cell line and that its expression is negatively correlated with the miR-191 level in patient samples. Our findings suggest that miR-191 may be a potential gene therapy target for the treatment of colorectal cancer.
    Oncotarget 02/2015; 6(6):4144-58. · 6.63 Impact Factor