Article

Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula.

Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street 51005 Tartu, Estonia.
Environmental Microbiology (Impact Factor: 6.24). 06/2008; 10(5):1189-201. DOI: 10.1111/j.1462-2920.2007.01535.x
Source: PubMed

ABSTRACT Niche differentiation in soil horizons, host species and natural nutrient gradients contribute to the high diversity of ectomycorrhizal fungi in boreal forests. This study aims at documenting the diversity and community composition of ectomycorrhizal fungi of Norway spruce (Picea abies) and silver birch (Betula pendula) seedlings in five most abundant microsites in three Estonian old-growth forests. Undisturbed forest floor, windthrow mounds and pits harboured more species than brown- and white-rotted wood. Several species of ectomycorrhizal fungi were differentially represented on either hosts, microsites and sites. Generally, the most frequent species in dead wood were also common in forest floor soil. Ordination analyses suggested that decay type determined the composition of EcM fungal community in dead wood. Root connections with in-growing mature tree roots from below affected the occurrence of certain fungal species on seedling roots systems in dead wood. This study demonstrates that ectomycorrhizal fungi differentially establish in certain forest microsites that is attributable to their dispersal and competitive abilities. Elevated microsites, especially decayed wood, act as seed beds for both ectomycorrhizal forest trees and fungi, thus affecting the succession of boreal forest ecosystems.

1 Bookmark
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ectomycorrhizal fungi (EcMF) form diverse communities and link different host plants into mycorrhizal networks, yet little is known about the magnitude of mycobiont diversity of a single tree individual. This study addresses species richness and spatial structure of EcMF in the root system of a single European aspen (Populus tremula) individual in an old-growth boreal mixed forest ecosystem in Estonia. Combining morphological and molecular identification methods for both plant and fungi, 122 species of EcMF were recovered from 103 root samples of the single tree. Richness estimators predicted the total EcMF richness to range from 182 to 207 species, reflecting the observation of 62.3% singletons and doubletons within the community. Fine-scale genetic diversity in Cenococcum geophilum indicates the presence of 23 internal transcribed spacer genotypes. EcMF community was significantly spatially autocorrelated only at the lineage level up to 3 m distance, but not at the species level. Proximity of other hosts had a significant effect on the spatial distribution of EcMF lineages. This study demonstrates that a single tree may host as many EcMF species and individuals as recovered on multiple hosts in diverse communities over larger areas.
    FEMS Microbiology Ecology 02/2011; 75(2):313-20. · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous species of ectomycorrhizal (ECM) fungi coexist under the forest floor. To explore the mechanisms of coexistence, we investigated the fine-scale distribution of ECM fungal species colonizing root tips in the root system of Tsuga diversifolia seedlings in a subalpine forest. ECM root tips of three seedlings growing on the flat top surface of rocks were sampled after recording their positions in the root system. After the root tips were grouped by terminal-restriction fragment length polymorphism (T-RFLP) analysis of ITS rDNA, the fungal species representing each T-RFLP group were identified using DNA sequencing. Based on the fungal species identification, the distribution of root tips colonized by each ECM fungus was mapped. Significant clustering of root tips was estimated for each fungal species by comparing actual and randomly simulated distributions. In total, the three seedlings were colonized by 40 ECM fungal species. The composition of colonizing fungal species was quite different among the seedlings. Twelve of the 15 major ECM fungal species clustered significantly within a few centimeters. Some clusters overlapped or intermingled, while others were unique. Areas with high fungal species diversity were also identified in the root system. In this report, the mechanisms underlying generation of these ECM root tip clusters in the root system are discussed.
    Mycorrhiza 11/2013; · 2.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coarse woody debris (CWD)is an important nursery environment for many tree species. Understanding the communities of ectomycorrhizal fungi (ECMF)and the effect of ECMF species on tree seedling condition in CWD will elucidate the potential for ECMF-mediatedeffects on seedling dynamics. In hemlock-dominatedstands, we characterized ECMF communities associated with eastern hemlock (Tsuga canadensis (L.) Carr) and yellow birch (Betula alleghaniensis Britt) seedling pairs growing on CWD. Seedling foliage and CWD were analyzed chemically, and seedling growth, canopy cover, and canopy species determined. Thirteen fungal taxa, 12 associated with birch, and 6 with hemlock, were identified based on morphology and ITS sequencing. Five species were shared by co-occurringbirch and hemlock, representing 75 % of ectomycorrhizal root tips. Rarified ECMF taxon richness per seedling was higher on birch than hemlock. Nonmetric multidimensional scaling revealed significant correlations between ordination axes, the mutually exclusive ECMF Tomentella and Lactarius spp., foliar N and K, CWD pH, and exchangeable Ca and Mg. Seedlings colonized by Lactarius and T. sublilacina differed significantly in foliar K and N, and CWD differed in exchangeable Ca and Mg. CWD pH and nutrient concentrations were low but foliar macro-nutrientconcentrations were not. We hypothesize that the dominant ECMF are adapted to low root carbohydrate availability typical in shaded environments but differ in their relative supply of different nutrients.
    Mycorrhiza 08/2014; · 2.96 Impact Factor