Article

MCP-1 induces cardioprotection against ischaemia/reperfusion injury: role of reactive oxygen species.

Department of Cardiovascular Medicine, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
Cardiovascular Research (Impact Factor: 5.81). 07/2008; 78(3):554-62. DOI: 10.1093/cvr/cvn035
Source: PubMed

ABSTRACT Monocyte chemoattractant protein-1 (MCP-1: CCL2) has been demonstrated to be involved in the pathophysiology of ischaemic heart disease; however, the precise role of MCP-1 in ischaemia/reperfusion (I/R) injury is controversial. Here, we investigated the role of cardiac MCP-1 expression on left ventricular (LV) dysfunction after global I/R in Langendorff-perfused hearts isolated from transgenic mice expressing the mouse JE-MCP-1 gene under the control of the alpha-cardiac myosin heavy chain promoter (MHC/MCP-1 mice).
In vitro experiments showed that MCP-1 prevented the apoptosis of murine neonatal cardiomyocytes after hypoxia/reoxygenation. I/R significantly increased the mRNA expression of MCP-1 in the Langendorff-perfused hearts of wild-type mice. Cardiac MCP-1 overexpression in the MHC/MCP-1 mice improved LV dysfunction after I/R without affecting coronary flow; in particular, it ameliorated LV diastolic pressure after reperfusion. This improvement was independent of both sarcolemmal and mitochondrial K(ATP) channels. Cardiac MCP-1 overexpression prevented superoxide generation in the I/R hearts, and these hearts showed decreased expression of the NADPH oxidase family proteins Nox1, gp91phox, and Nox3 compared with the hearts of wild-type mice. Further, superoxide dismutase activity in the hearts of MHC/MCP-1 mice was significantly increased compared with that in the hearts of wild-type mice.
These findings suggest that cardiac MCP-1 prevented LV dysfunction after global I/R through a reactive oxygen species-dependent but K(ATP) channel-independent pathway; this provides new insight into the beneficial role of MCP-1 in the pathophysiology of ischaemic heart diseases.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracerebral hemorrhage (ICH) is a devastating clinical event which results in a high rate of disability and death. At present, no effective treatment is available for ICH. Accumulating evidence suggests that inflammatory responses contribute significantly to the ICH-induced secondary brain outcomes. During ICH, inflammatory cells accumulate at the ICH site attracted by gradients of chemokines. This review summarizes recent progress in ICH studies and the chemoattractants that act during the injury and focuses on and introduces the basic biology of the chemokine monocyte chemoattractant protein-1 (MCP1) and its role in the progression of ICH. Better understanding of MCP1 signaling cascade and the compensation after its inhibition could shed light on the development of effective treatments for ICH.
    Translational Stroke Research 07/2012; 3(Suppl 1):70-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocyte chemoattractant protein 1 (MCP1) is an important chemoattractant for microglia. Rodent MCP1 carries a heavily glycosylated C-terminus, which has been predicted to increase local MCP1 concentration, promote MCP1 dimerization/oligomerization, and facilitate receptor engagement. Previous studies have shown that MCP1 mutant lacking the glycosylated C-terminus cannot dimerize/oligomerize, but has higher chemotactic potency than the wild-type (full-length) MCP1, suggesting that rodent MCP1 may function as a monomer. Although many groups support this hypothesis, there is no direct evidence on whether rodent MCP1 dimer is functional. In this paper, using forced recombinant dimeric MCP1 proteins we show that the mouse MCP1 dimer is unable to activate Rac1, promote protrusion of lamellipodia, or induce microglial migration, although it can bind to CCR2 and mediate its internalization. These results support the idea that signaling events mediated by MCP1 require the presence of the monomeric form of this chemokine.
    The international journal of biochemistry & cell biology. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood-brain barrier (BBB) is a dynamic structure that maintains the homeostasis of the brain and thus proper neurological functions. BBB compromise has been found in many pathological conditions, including neuroinflammation. Monocyte chemoattractant protein-1 (MCP1), a chemokine that is transiently and significantly up-regulated during inflammation, is able to disrupt the integrity of BBB and modulate the progression of various diseases, including excitotoxic injury and hemorrhage. In this review, we first introduce the biochemistry and biology of MCP1, and then summarize the effects of MCP1 on BBB integrity as well as individual BBB components.
    Cellular and Molecular Life Sciences CMLS 09/2013; · 5.62 Impact Factor