MCP-1 induces cardioprotection against ischaemia/reperfusion injury: Role of reactive oxygen species

Department of Cardiovascular Medicine, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
Cardiovascular Research (Impact Factor: 5.94). 07/2008; 78(3):554-62. DOI: 10.1093/cvr/cvn035
Source: PubMed


Monocyte chemoattractant protein-1 (MCP-1: CCL2) has been demonstrated to be involved in the pathophysiology of ischaemic heart disease; however, the precise role of MCP-1 in ischaemia/reperfusion (I/R) injury is controversial. Here, we investigated the role of cardiac MCP-1 expression on left ventricular (LV) dysfunction after global I/R in Langendorff-perfused hearts isolated from transgenic mice expressing the mouse JE-MCP-1 gene under the control of the alpha-cardiac myosin heavy chain promoter (MHC/MCP-1 mice).
In vitro experiments showed that MCP-1 prevented the apoptosis of murine neonatal cardiomyocytes after hypoxia/reoxygenation. I/R significantly increased the mRNA expression of MCP-1 in the Langendorff-perfused hearts of wild-type mice. Cardiac MCP-1 overexpression in the MHC/MCP-1 mice improved LV dysfunction after I/R without affecting coronary flow; in particular, it ameliorated LV diastolic pressure after reperfusion. This improvement was independent of both sarcolemmal and mitochondrial K(ATP) channels. Cardiac MCP-1 overexpression prevented superoxide generation in the I/R hearts, and these hearts showed decreased expression of the NADPH oxidase family proteins Nox1, gp91phox, and Nox3 compared with the hearts of wild-type mice. Further, superoxide dismutase activity in the hearts of MHC/MCP-1 mice was significantly increased compared with that in the hearts of wild-type mice.
These findings suggest that cardiac MCP-1 prevented LV dysfunction after global I/R through a reactive oxygen species-dependent but K(ATP) channel-independent pathway; this provides new insight into the beneficial role of MCP-1 in the pathophysiology of ischaemic heart diseases.

6 Reads
  • Source
    • "Indeed, short-term enhancement of MCP-1 has been shown to improve reperfusion in a hindlimb ischemia model.31 In support of this latter report, another study demonstrated that cardiac MCP-1 overexpression induces macrophage infiltration, neovascularization, and the accumulation of cardiac myofibroblasts, thereby resulting in the prevention of cardiac dysfunction and remodeling after myocardial infarction.32 "
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The major concept behind augmentation therapy with human α(1)-antitrypsin (AAT) is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys)-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema. OBJECTIVE: To evaluate the short-term effects of augmentation therapy (Prolastin(®)) on plasma levels of AAT, C-reactive protein, and chemokines/cytokines. MATERIALS AND METHODS: Serum and exhaled breath condensate were collected from individuals with protease inhibitor phenotype ZZ AAT deficiency-related emphysema (n = 12) on the first, third, and seventh day after the infusion of intravenous Prolastin. Concentrations of total and polymeric AAT, interleukin-8 (IL-8), monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, vascular endothelial growth factor, and C-reactive protein were determined. Blood neutrophils and primary epithelial cells were also exposed to Prolastin (1 mg/mL). RESULTS: There were significant fluctuations in serum (but not in exhaled breath condensate) levels of AAT polymers, IL-8, monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor within a week of augmentation therapy. In general, augmented individuals had higher AAT and lower serum levels of IL-8 than nonaugmented subjects. Prolastin added for 3 hours to neutrophils from protease inhibitor phenotype ZZ individuals in vitro reduced IL-8 release but showed no effect on cytokine/chemokine release from human bronchial epithelial cells. CONCLUSION: Within a week, augmentation with Prolastin induced fluctuations in serum levels of AAT polymers and cytokine/chemokines but specifically lowered IL-8 levels. It remains to be determined whether these effects are related to the Prolastin preparation per se or to the therapeutic efficacy of augmentation with AAT.
    International Journal of COPD 09/2012; 7:687-696. DOI:10.2147/COPD.S34560 · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma cruzi, an intracellular protozoan parasite infecting a wide variety of vertebrates, is the agent responsible for Chagas' disease. This pathology often results in severe inflammatory heart condition and it is one of the major causes of dilated cardiomyopathy leading to heart failure in Latin America. Nevertheless, little is known about the changes in isolate cardiac myocytes contractility during the development of this pathology. Here we report a relationship between cytokines profile of mice infected with T. cruzi and the modifications in the cellular contractility pattern. We found that cellular contractility, measured as fractional shortening, showed a complex behavior. The changes were evaluated during the acute phase (15, 30 and 45 dpi) and chronic phase (>90 dpi). The time to half contraction and relaxation were lengthier despite the number of days after infection or the heart region evaluated. The maximal contraction and relaxation velocities were significantly slower. The observed changes in cellular contractility were correlated with the presence of circulating IFN-gamma, TNF-alpha and MCP-1/CCL2 during the course of infection. Together, our data demonstrate that cellular contractility is altered in the three heart regions studied, and these alterations are observed at the very beginning of the parasitism and they remained until the chronic phase has been reached. Indeed, we propose a role for IFN-gamma, TNF-alpha and MCP-1/CCL2 in the mechanical heart remodeling during experimental Chagas' disease.
    Archiv für Kreislaufforschung 02/2009; 104(3):238-46. DOI:10.1007/s00395-009-0776-x · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circulating progenitor cells home to and engraft to sites of ischemia, mediated in part by the adhesion molecule L-selectin; however, accumulation in tissues such as the heart is low. In this study, an acellular collagen-based matrix containing sialyl Lewis(X) (sLe(X)), which binds L-selectin, was developed in order to enhance the endogenous progenitor cell therapeutic response. Its effect on progenitor cells and angiogenesis were assessed in vitro and using a hindlimb ischemia model with rats. In culture, the sLe(X)-collagen matrix recruited more CD133(+)CD34(+)L-selectin(+) cells than collagen-only matrix, with adhesion mediated by L-selectin binding. Increased angiogenic/chemotactic cytokine production and improved resistance to apoptosis appeared in cells cultured on sLe(X)-collagen matrix. In vivo, mobilization of endogenous circulating progenitor cells was increased, and greater recruitment of these and systemically injected human peripheral blood CXCR4(+)L-selectin(+) cells to sLe(X)-collagen treated limbs was observed compared to collagen-only. This condition was associated with differences in angiogenic/chemotactic cytokine levels, with greater arteriole density and increased perfusion in sLe(X)-collagen treated hindlimbs. With these factors taken together, we demonstrated that an acellular matrix-bound ligand approach can enhance the mobilization, recruitment, and therapeutic effects of endogenous and/or transplanted progenitor cells, possibly through paracrine and antiapoptotic mechanisms, and could be used to improve cell-based regenerative therapies.
    The FASEB Journal 02/2009; 23(5):1447-58. DOI:10.1096/fj.08-111054 · 5.04 Impact Factor
Show more