Bioconcentration of organic chemicals: is a solid-phase microextraction fiber a good surrogate for biota?

Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
Environmental Science and Technology (Impact Factor: 5.48). 01/2003; 36(24):5399-404. DOI: 10.1021/es0257016
Source: PubMed

ABSTRACT When organic chemicals are extracted from a water sample with solid-phase microextraction (SPME) fibers, the resulting concentrations in exposed fibers are proportional to the hydrophobicity of the compounds. This fiber accumulation is analogous to the bioconcentration of chemicals observed in aquatic organisms. The objective of this study was to investigate the prospect of measuring the total concentration in SPME fibers to estimate the total body residue in biota for the purpose of risk assessment. Using larvae of the midge, Chironomus riparius and disposable 15-microm poly(dimethylsiloxane) fibers, we studied the accumulation and accumulation kinetics of a number of narcotic compounds with a range of log K(ow) between 3 and 6. The fibers, which have a larger surface area-to-volume ratio, had consistently higher uptake and elimination rate constants (k1 and k2, respectively) than midge larvae and accumulated the chemicals 5 times faster. Comparison of the relationships of the partition coefficients K(PDMS-water) and K(midge-water) (lipid-normalized) to log K(ow) for all compounds yielded a factor of 28 for translating fiber concentrations to biota concentrations. This factor can be used to estimate internal concentrations in biota for compounds structurally similar to the compounds in this study. The exact chemical domain to which this factor can be applied needs to be defined in future research.


Available from: Michiel H. S. Kraak, Jun 09, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methods that quantify dissolved hydrocarbons are needed to link oil exposures to toxicity. Solid phase microextraction (SPME) fibers can serve this purpose. If fibers are equilibrated with oiled water, dissolved hydrocarbons partition to and are concentrated on the fiber. The absorbed concentration (Cpolymer) can be quantified by thermal desorption using GC/FID. Further, given that the site of toxic action is hypothesized as biota lipid and partitioning of hydrocarbons to lipid and fibers is well correlated, Cpolymer is hypothesized to be a surrogate for toxicity prediction. To test this method, toxicity data for physically and chemically dispersed oils were generated for shrimp, Americamysis bahia, and compared to test exposures characterized by Cpolymer. Results indicated that Cpolymer reliably predicted toxicity across oils and dispersions. To illustrate field application, SPME results are reported for oil spills at the Ohmsett facility. SPME fibers provide a practical tool to improve characterization of oil exposures and predict effects in future lab and field studies.
    Marine Pollution Bulletin 08/2014; 86(1-2). DOI:10.1016/j.marpolbul.2014.07.006 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree . Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance references compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of (1) contaminant exchange and equilibrium status between sediment and overlying water, (2) benthic bioaccumulation and (3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments. Integr Environ Assess Manag © 2013 SETAC.
    Integrated Environmental Assessment and Management 04/2014; 10(2):197-209. DOI:10.1002/ieam.1508
  • [Show abstract] [Hide abstract]
    ABSTRACT: The relative health of benthic invertebrate populations is threatened by both dissolved and strongly-bound contaminants. Sediment-bound contaminants can be mobilized and metabolized in the guts of deposit-feeders and may lead to even more potent derivatives. For this reason, measures of parent substance concentrations in organisms are not a suitable exposure indicator when substantial biotransformation can occur. In this study, we assessed the concentration of waterborne 14C-benzo[a]pyrene (BaP) in Chironomus riparius larvae and in the oligochaete Lumbriculus variegatus at different levels of dissolved organic carbon (DOC). These two species have different biotransformation capabilities. Polydimethylsiloxane (PDMS) fiber was used to assess the freely-dissolved concentrations for the prediction of uptake and elimination kinetics. Exposure concentrations decreased due to the presence of DOC. Radioactivity that corresponded to the metabolites exceeded 90% of total extractable fractions in C. riparius, and suggested that BaP metabolism was faster than uptake from solution. However, only 10% of the extracted activity was attributed to metabolites in L. variegatus. Measured tissue concentrations and model-predicted uptake and elimination rates showed that L. variegatus mainly accumulated parent compound, whereas C. riparius accumulated mainly metabolites. No effect of DOC was observed on the biotransformation of BaP in either species.
    Aquatic Ecosystem Health and Management 03/2013; 16(1):70 - 77. DOI:10.1080/14634988.2013.753827 · 1.00 Impact Factor