Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1.

MRC Protein Phosphorylation Unit, MSI/WTB complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
Journal of Cell Science (Impact Factor: 5.33). 04/2008; 121(Pt 5):675-84. DOI: 10.1242/jcs.025312
Source: PubMed

ABSTRACT Mutations increasing WNK1 kinase expression in humans cause the pseudohypoaldosteronism type II hypertension syndrome. This condition is treated effectively by thiazide diuretics, which exert their effects by inhibiting the Na+-Cl(-) cotransporter (NCC), suggesting a link between WNK1 and NCC. Here, we demonstrate that the SPAK and OSR1 kinases that are activated by WNK1 phosphorylate human NCC at three conserved residues (Thr46, Thr55 and Thr60). Activation of the WNK1-SPAK/OSR1 signalling pathway by treatment of HEK293 or mpkDCT kidney distal-convoluted-tubule-derived cells with hypotonic low-chloride conditions induced phosphorylation of NCC at residues phosphorylated by SPAK/OSR1. Efficient phosphorylation of NCC was dependent upon a docking interaction between an RFXI motif in NCC and SPAK/OSR1. Mutation of Thr60 to Ala in NCC markedly inhibited phosphorylation of Thr46 and Thr55 as well as NCC activation induced by hypotonic low-chloride treatment of HEK293 cells. Our results establish that the WNK1-SPAK/OSR1 signalling pathway plays a key role in controlling the phosphorylation and activity of NCC. They also suggest a mechanism by which increased WNK1 overexpression could lead to hypertension and that inhibitors of SPAK/OSR1 might be of use in reducing blood pressure by suppressing phosphorylation and hence activity of NCC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Upon activation by with-no-lysine kinases, STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) phosphorylates and activates SLC12A transporters such as the Na(+)-Cl(-) cotransporter (NCC) and Na(+)-K(+)-2Cl(-) cotransporter type 1 (NKCC1) and type 2 (NKCC2); these transporters have important roles in regulating BP through NaCl reabsorption and vasoconstriction. SPAK knockout mice are viable and display hypotension with decreased activity (phosphorylation) of NCC and NKCC1 in the kidneys and aorta, respectively. Therefore, agents that inhibit SPAK activity could be a new class of antihypertensive drugs with dual actions (i.e., NaCl diuresis and vasodilation). In this study, we developed a new ELISA-based screening system to find novel SPAK inhibitors and screened >20,000 small-molecule compounds. Furthermore, we used a drug repositioning strategy to identify existing drugs that inhibit SPAK activity. As a result, we discovered one small-molecule compound (Stock 1S-14279) and an antiparasitic agent (Closantel) that inhibited SPAK-regulated phosphorylation and activation of NCC and NKCC1 in vitro and in mice. Notably, these compounds had structural similarity and inhibited SPAK in an ATP-insensitive manner. We propose that the two compounds found in this study may have great potential as novel antihypertensive drugs.
    Journal of the American Society of Nephrology 11/2014; · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The subfamily of WNK (With No K [lysine]) protein kinases is characterised by a unique sequence variation in the catalytic domain: a conserved lysine residue that is essential for catalytic activity in most eucaryotic protein kinases is located in an alternative position within the catalytic domain and this variation may result in unique substrate binding properties. The human genome contains four WNK genes, with different tissue-specific expression patterns. Mutations in WNK1 or WNK4 cause a hereditary hypertension syndrome due to increased renal salt retention. At the molecular level, WNK1, WNK3 or WNK4 have been shown to regulate different ion transporters in both the kidney and extrarenal tissues. Growing evidence has also revealed additional roles for WNK kinases in multiple signalling cascades related to tumour biology. There is strong evidence for a role as upstream regulators of MAPK cascades involved in cell proliferation control. In addition, a requirement of some WNK members for cell survival has been demonstrated. Here, we review the experimental evidence linking WNK kinases to tumorigenesis and discuss their role in major aspects of tumour biology: G1/S cell cycle progression, metabolic tumour cell adaptation, evasion of apoptosis, and metastasis.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K(+)-Cl(-) cotransporter (KCC2), is the principal Cl(-)-extruder, whereas Na(+)-K(+)-Cl(-) cotransporter (NKCC1), is the major Cl(-)-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features.
    Frontiers in Cellular Neuroscience 01/2014; 8:470. · 4.18 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014