Article

Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappaB1 and attenuates macrophage activation.

Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2008; 283(15):9692-703. DOI: 10.1074/jbc.M709663200
Source: PubMed

ABSTRACT Macrophage activation participates pivotally in the pathophysiology of chronic inflammatory diseases, including atherosclerosis. Through the receptor EP4, prostaglandin E(2) (PGE(2)) exerts an anti-inflammatory action in macrophages, suppressing stimulus-induced expression of certain proinflammatory genes, including chemokines. We recently identified a novel EP4 receptor-associated protein (EPRAP), whose function in PGE(2)-mediated anti-inflammation remains undefined. Here we demonstrate that PGE(2) pretreatment selectively inhibits lipopolysaccharide (LPS)-induced nuclear factor kappaB1 (NF-kappaB1) p105 phosphorylation and degradation in mouse bone marrow-derived macrophages through EP4-dependent mechanisms. Similarly, directed EPRAP expression in RAW264.7 cells suppresses LPS-induced p105 phosphorylation and degradation, and subsequent activation of mitogen-activated protein kinase kinase 1/2. Forced expression of EPRAP also inhibits NF-kappaB activation induced by various proinflammatory stimuli in a concentration-dependent manner. In co-transfected cells, EPRAP, which contains multiple ankyrin repeat motifs, directly interacts with NF-kappaB1 p105/p50 and forms a complex with EP4. In EP4-overexpressing cells, PGE(2) enhances the protective action of EPRAP against stimulus-induced p105 phosphorylation, whereas EPRAP silencing in RAW264.7 cells impairs the inhibitory effect of PGE(2)-EP4 signaling on LPS-induced p105 phosphorylation. Additionally, EPRAP knockdown as well as deficiency of NF-kappaB1 in macrophages attenuates the inhibitory effect of PGE(2) on LPS-induced MIP-1beta production. Thus, PGE(2)-EP4 signaling augments NF-kappaB1 p105 protein stability through EPRAP after proinflammatory stimulation, limiting macrophage activation.

0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostaglandin (PG) E(2), a major product of activated macrophages, has been implicated in atherosclerosis and plaque rupture. The PGE(2) receptors, EP2 and EP4, are expressed in atherosclerotic lesions and are known to inhibit apoptosis in cancer cells. To examine the roles of macrophage EP4 and EP2 in apoptosis and early atherosclerosis, fetal liver cell transplantation was used to generate LDLR(-/-) mice chimeric for EP2(-/-) or EP4(-/-) hematopoietic cells. After 8 weeks on a Western diet, EP4(-/-) --> LDLR(-/-) mice, but not EP2(-/-) --> LDLR(-/-) mice, had significantly reduced aortic atherosclerosis with increased apoptotic cells in the lesions. EP4(-/-) peritoneal macrophages had increased sensitivity to proapoptotic stimuli, including palmitic acid and free cholesterol loading, which was accompanied by suppression of activity of p-Akt, p-Bad, and NF-kappaB-regulated genes. Thus, EP4 deficiency inhibits the PI3K/Akt and NF-kappaB pathways compromising macrophage survival and suppressing early atherosclerosis, identifying macrophage EP4-signaling pathways as molecular targets for modulating the development of atherosclerosis.
    Cell metabolism 01/2009; 8(6):492-501. DOI:10.1016/j.cmet.2008.09.005 · 16.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A protocol for shortcut-based QoS provisioning, named QRISP (QoS-oriented receiver-initiated shortcut path), is explained. It enables setting-up a QoS guaranteed path in IPOA/ATM heterogeneous environment with a single shot of signalling. QRISP extends previous work of RISP so that a short-cut path is established in LAN-WAN-LAN interworking environment without additional negotiation and extension of IP routers. Related service provisioning and management issues are discussed
    Global Telecommunications Conference, 1998. GLOBECOM 98. The Bridge to Global Integration. IEEE; 02/1998
  • [Show abstract] [Hide abstract]
    ABSTRACT: Complex intracellular network interactions regulate gene expression and cellular behavior. Whether at the site of inflammation or within a tumor, individual cells are exposed to a plethora of signals. The transcription factor nuclear factor-kappaB (NF-kappaB) regulates genes that control key cellular activities involved in inflammatory diseases and cancer. NF-kappaB is regulated by several distinct signaling pathways that may be activated individually or simultaneously. Multiple ligands and heterologous cell-cell interactions have an impact on NF-kappaB activity. The G protein-coupled receptor (GPCR) superfamily makes up the largest class of transmembrane receptors in the human genome and has multiple molecularly distinct natural ligands. GPCRs regulate proliferation, differentiation, and chemotaxis and play a major role in inflammatory diseases and cancer. Both GPCRs and NF-kappaB have been, and continue to be, major targets for drug discovery. A clear understanding of network interactions between GPCR signaling pathways and those that control NF-kB may be valuable for the development of better drugs and drug combinations.
    International Reviews Of Immunology 02/2008; 27(5):320-50. DOI:10.1080/08830180802262765 · 5.28 Impact Factor