Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light.

Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814, USA.
NeuroImage (Impact Factor: 6.13). 05/2008; 40(3):1034-43. DOI: 10.1016/j.neuroimage.2007.12.055
Source: PubMed

ABSTRACT To identify the neural constituents responsible for generating polarized light changes, we created spatially resolved movies of propagating action potentials from stimulated lobster leg nerves using both reflection and transmission imaging modalities. Changes in light polarization are associated with membrane depolarization and provide sub-millisecond temporal resolution. Typically, signals are detected using light transmitted through tissue; however, because we eventually would like to apply polarization techniques in-vivo, reflected light is required. In transmission mode, the optical signal was largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. In support of these observations, an optical model of the tissue showed that the outer sheath is more reflective while the inner nerve bundle is more transmissive. In order to apply these techniques in-vivo, we must consider that brain tissue does not have a regular orientation of processes as in the lobster nerve. We tested the effect of randomizing cell orientation by tying the nerve in an overhand knot prior to imaging, producing polarization changes that can be imaged even without regular cell orientations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to test the feasibility of en face mapping of the transient intrinsic optical signal (IOS) response at photoreceptor outer segments and to assess the effect of spatial resolution on functional IOS imaging of retinal photoreceptors. A line-scan optical coherence tomography (LS-OCT) was constructed to achieve depth-resolved functional IOS imaging of living frog eyecups. Rapid en face OCT revealed transient IOS almost immediately (<3 ms) after the onset of visible light flashes at photoreceptor outer segments. Quantitative analysis indicated that the IOS kinetics may reflect dynamics of G-protein binding and releasing in early phases of visual transduction, and high resolution is essential to differentiate positive and negative IOS changes in adjacent locations.
    Optics Letters 11/2013; 38(22):4526-9. · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High resolution monitoring of stimulus-evoked retinal neural activities is important for understanding retinal neural mechanisms, and for diagnosis of retinal disease and evaluation of treatment. Fast intrinsic optical signals (IOSs), which have the time courses comparable to retinal electrophysiological responses, hold the promise for high resolution imaging of retinal neural activities. However, application of fast IOS imaging has been hindered by contamination of slow, high magnitude, optical responses associated with transient hemodynamic and metabolic changes. We recently demonstrated the feasibility of separating fast IOSs from slow optical responses by combined dynamic differential imaging and high frequency flicker stimulation.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2010; · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present recent work on bioinspired polarization imaging sensors and their applications in biomedicine. In particular, we focus on three different aspects of these sensors. First, we describe the electro–optical challenges in realizing a bioinspired polarization imager, and in particular, we provide a detailed description of a recent low-power complementary metal–oxide–semiconductor (CMOS) polarization imager. Second, we focus on signal processing algorithms tailored for this new class of bioinspired polarization imaging sensors, such as calibration and interpolation. Third, the emergence of these sensors has enabled rapid progress in characterizing polarization signals and environmental parameters in nature, as well as several biomedical areas, such as label-free optical neural recording, dynamic tissue strength analysis, and early diagnosis of flat cancerous lesions in a murine colorectal tumor model. We highlight results obtained from these three areas and discuss future applications for these sensors.
    Proceedings of the IEEE 08/2014; PP(99):1-20. · 5.47 Impact Factor