Diffractive micro bar codes for encoding of biomolecules in multiplexed assays.

School of Chemistry, School of Electronics and Computer Science, Optoelectronics Research Centre, and School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
Analytical Chemistry (Impact Factor: 5.7). 03/2008; 80(6):1902-9. DOI: 10.1021/ac7018574
Source: PubMed

ABSTRACT Microparticles incorporating micrometer-sized diffractive bar codes have been modified with oligonucleotides and immunoglobulin Gs to enable DNA hybridization and immunoassays. The bar codes are manufactured using photolithography of a chemically functional commercial epoxy photoresist (SU-8). When attached by suitable linkers, immobilized probe molecules exhibit high affinity for analytes and fast reaction kinetics, allowing detection of single nucleotide differences in DNA sequences and multiplexed immunoassays in <45 min. Analysis of raw data from assays carried out on the diffractive microparticles indicates that the reproducibility and sensitivity approach those of commercial encoding platforms. Micrometer-sized particles, imprinted with several superimposed diffraction gratings, can encode many million unique codes. The high encoding capacity of this technology along with the applicability of the manufactured bar codes to multiplexed assays will allow accurate measurement of a wide variety of molecular interactions, leading to new opportunities in diverse areas of biotechnology such as genomics, proteomics, high-throughput screening, and medical diagnostics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A multiplexed suspension array platform, based on SU8 disks patterned with machine-readable binary identification codes is presented. Multiple probe molecules, each attached to individual disks with different unique codes, provide multiplexed detection of targets in a small sample volume. The experimental system consists of a microfluidic chamber for arraying the particles in a manner suitable for high throughput imaging using a simple fluorescent microscope, together with custom software for automated code readout and analysis of assay response. The platform is demonstrated with a multiplexed antibody assay targeting 3 different human inflammatory cytokines. The suitability of the platform for other bio-analytical applications is discussed.
    Biomedical Microdevices 03/2012; 14(4):651-7. · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate the use of graphically encoded hydrogel microparticles for the sensitive and high-throughput multiplexed detection of clinically relevant protein panels in complex media. Combining established antibody capture techniques with advances in both microfluidic synthesis and analysis, we detected 1-8 pg/mL amounts of three cytokines (interleuken-2, interleuken-4, and tumor necrosis factor alpha) in single and multiplexed assays without the need for filtration or blocking agents. A range of hydrogel porosities was investigated to ensure rapid diffusion of targets and reagents into the particle as well as to maintain the structural integrity of particles during rinsing procedures and high-velocity microfluidic scanning. Covalent incorporation of capture antibodies using a heterobifunctional poly(ethylene glycol) linker enabled one-step synthesis and functionalization of particles using only small amounts of valuable reagents. In addition to the use of three separate types of single-probe particles, the flexibility of the stop-flow lithography (SFL) method was leveraged to spatially segregate the three probes for the aforementioned target set on an individual encoded particle, thereby demonstrating the feasibility of single-particle diagnostic panels. This study establishes the gel-particle platform as a versatile tool for the efficient quantification of protein targets and significantly advances efforts to extend the advantages of both hydrogel substrates and particle-based arrays to the field of clinical proteomics.
    Analytical Chemistry 01/2011; 83(1):193-9. · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report upon the application of quantum dot barcodes prepared by layer-by-layer biological self-assembly of quantum dot-biotin and quantum dot-streptavidin conjugates on magnetic beads for qualitative multiplexed immunoassay.
    Chemical Communications 04/2010; 46(16):2814-6. · 6.38 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014