Article

Effects of selenium supply and dietary restriction on maternal and fetal metabolic hormones in pregnant ewe lambs.

Center for Nutrition and Pregnancy and Animal and Range Sciences Department, North Dakota State University, Fargo 58105, USA.
Journal of Animal Science (Impact Factor: 2.09). 05/2008; 86(5):1254-62. DOI: 10.2527/jas.2007-0509
Source: PubMed

ABSTRACT The objective of these studies was to evaluate the effects of dietary restriction and Se on maternal and fetal metabolic hormones. In Exp. 1, pregnant ewe lambs (n = 32; BW = 45.6 +/- 2.3 kg) were allotted randomly to 1 of 4 treatments. Diets contained (DM basis) either no added Se (control), or supranutritional Se added as high-Se wheat at 3.0 mg/kg (Se-wheat), or sodium selenate at 3 (Se3) and 15 (Se15) mg/kg of Se. Diets (DM basis) were similar in CP (15.5%) and ME (2.68 Mcal/kg). Treatments were initiated at 50 +/- 5 d of gestation. The control, Se-wheat, Se3, and Se15 treatments provided 2.5, 75, 75, and 375 microg/kg of BW of Se, respectively. Ewe jugular blood samples were collected at 50, 64, 78, 92, 106, 120, and 134 d of gestation. Fetal serum samples were collected at necropsy on d 134. In Exp. 2, pregnant ewe lambs (n = 36; BW 53.8 +/- 1.3 kg) were allotted randomly to treatments in a 2 x 2 factorial arrangement. Factors were nutrition (control, 100% of requirements vs. restricted nutrition, 60% of control) and dietary Se (adequate Se, 6 microg/kg of BW vs. high Se, 80 microg/kg of BW). Selenium treatments were initiated 21 d before breeding, and nutritional treatments were initiated on d 64 of gestation. Diets were 16% CP and 2.12 Mcal/kg of ME (DM basis). Blood samples were collected from the ewes at 62, 76, 90, 104, 118, 132, and 135 d of gestation. Fetal blood was collected at necropsy on d 135. In Exp.1, dietary Se source and concentration had no effect (P > 0.17) on maternal and fetal serum IGF-I, triiodothyronine (T(3)), or thyroxine (T(4)) concentrations. Selenium supplementation increased (P = 0.06) the T(4):T(3) ratio vs. controls. In Exp. 2, dietary Se had no impact (P > 0.33) on main effect means for maternal and fetal serum IGF-I, T(3), or T(4) concentrations from d 62 to 132; however, at d 135, high-Se ewes had lower (P = 0.01) serum T(4) concentrations than adequate-Se ewes. A nutrition by Se interaction (P = 0.06) was detected for the T(4):T(3) ratios; ewes fed restricted and adequate-Se diets had greater (P = 0.10) T(4):T(3) ratios compared with the other treatments. Nutrient-restricted ewes had lower (P < 0.05) serum IGF-I, T(3), and T(4) concentrations. Fetal serum IGF-I concentrations were lower (P = 0.01) in restricted-vs. control-fed ewes; however, fetal T(3) and T(4) concentrations were unaffected (P > 0.13) by dietary Se or maternal plane of nutrition. These data indicate that dietary Se may alter maternal T(4):T(3) ratios. In addition, nutrient restriction during gestation reduces maternal IGF-I, T(3), and T(4) and fetal IGF-I concentrations.

0 Bookmarks
 · 
173 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was carried out to evaluate the effects of sodium selenite on fetal development and DNA in liver of rats. Pregnant rats were divided into three groups: control group, group treated orally with 5 µg Se/kg body wt. and group treated orally with 10 µg Se/kg body wt. Dams were treated orally with sodium selenite from day 7 to 19 of gestation. Sodium selenite treatment revealed decrease in maternal body weight, reduction in fetal weight, length and number of viable fetuses, increased number of resorbed fetuses and post-implantation loss at the two doses tested. Fetal skeleton showed signs of developmental delay in skull and limbs of the treated groups. Sodium selenite treatment revealed significant reduction of placental and liver weights in treated dams. Sodium selenite-induced oxidative stress in liver tissue of rats as evidenced by increase in lipid peroxidation and glutathione peroxidase activity, while catalase was significantly decreased. Also, increase in DNA fragmentation, marked reduction of hepatic DNA content, and many histopathological changes in the liver were recorded. The results demonstrated that treatment of pregnant rats with sodium selenite at the toxic dosages chosen showed maternal and fetal toxicity that may be concerned with hepatic oxidative stress accompanied with DNA fragmentation and depletion of total DNA content.
    Biological trace element research 04/2010; 140(1):114-26. · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormones (THs) are crucial for growth and development and particularly brain development. The present study was carried out to investigate the brain derived neurotrophic factor (BDNF) and Oxidative stress index (OSI) in the brain of pups born to dams with methimazole (MMI) induced hypothyroidism. Also, to elucidate the effectiveness of selenium (Se) in ameliorating the brain damaging effects induced by maternal hypothyroidism. Our results reveled that plasma free T3 (FT3), free T4 (FT4), growth hormone (GH) were significantly decreased while plasma thyroid stimulating hormone (TSH) was significantly increased in the pups. BDNF level significantly decreased while OSI significantly increased in both the hippocampus and cerebellum in pups born to hypothyroid dams. Se supplementation significantly alleviated the levels of these parameters. The biochemical modifications were confirmed histologically with the abnormal development of the hippocampus and cerebellum and partial reversal of these effects with Se supplementation. We concluded that reduced hippocampal and cerebellar BDNF levels and increment of oxidative stress during early development may contribute to the adverse neurodevelopmental effects of hypothyroidism during pregnancy. Also, Se is an important neuroprotective element that may be used as a dietary supplement against brain damage induced by hypothyroidism.
    Acta Physiologica Hungarica 06/2013; 100(2):197-210. · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over 2 years, 32 beef cows nursing calves in southwest Arkansas were randomly selected from a herd of 120 that were managed in six groups and were assigned to six 5.1-ha bermudagrass (Cynodon dactylon [L.] Pers.) pastures. Treatments were assigned to pastures (two pastures/treatment) and cows had ad libitum access to one of three free-choice minerals: (1) no supplemental selenium (Se), (2) 26 mg of supplemental Se from sodium selenite per kilogram, and (3) 26 mg of supplemental Se from seleno-yeast per kilogram (designed mineral intake = 113 g/cow daily). Data were analyzed using a mixed model; year and pasture were the random effects and treatment was the fixed effect. At the beginning of the calving and breeding seasons, cows supplemented with Se had greater (P < 0.01) whole blood Se concentration (WBSe) and glutathione peroxidase activities (GSH-Px) than cows receiving no supplemental Se; cows fed seleno-yeast had greater (P ≤ 0.05) WBSe than cows fed sodium selenite, but GSH-Px did not differ (P ≥ 0.25) between the two sources. At birth and near peak lactation (late May), calves from cows supplemented with Se had greater (P < 0.01) WBSe than calves from cows fed no Se and calves from cows fed seleno-yeast had greater (P ≤ 0.01) WBSe and GSH-Px than calves from cows fed sodium selenite. Thyroxine (T(4)), triiodothyronine (T(3)), and the T(4):T(3) ratio in calves did not differ among treatments (P ≥ 0.35). At birth, insulin-like growth factor 1 (IGF-1) was greater (P = 0.02) in calves nursing cows with no supplemental Se than in ones with supplemental Se; in calves nursing cows with supplemental sodium selenite, IGF-1 did not differ (P = 0.96) from ones offered supplemental seleno-yeast. Selenium supplementation of gestating beef cows benefited cows and calves by increasing WBSe and GSH-Px. The use of seleno-yeast as a Se supplement compared to sodium selenite increased the WBSe of both cows and their calves without affecting the T(4) to T(3) conversion or IGF-1 concentrations.
    Biological trace element research 02/2013; · 1.92 Impact Factor

Full-text (2 Sources)

View
59 Downloads
Available from
May 21, 2014