Effects of selenium supply and dietary restriction on maternal and fetal metabolic hormones in pregnant ewe lambs

Center for Nutrition and Pregnancy and Animal and Range Sciences Department, North Dakota State University, Fargo 58105, USA.
Journal of Animal Science (Impact Factor: 1.92). 05/2008; 86(5):1254-62. DOI: 10.2527/jas.2007-0509
Source: PubMed

ABSTRACT The objective of these studies was to evaluate the effects of dietary restriction and Se on maternal and fetal metabolic hormones. In Exp. 1, pregnant ewe lambs (n = 32; BW = 45.6 +/- 2.3 kg) were allotted randomly to 1 of 4 treatments. Diets contained (DM basis) either no added Se (control), or supranutritional Se added as high-Se wheat at 3.0 mg/kg (Se-wheat), or sodium selenate at 3 (Se3) and 15 (Se15) mg/kg of Se. Diets (DM basis) were similar in CP (15.5%) and ME (2.68 Mcal/kg). Treatments were initiated at 50 +/- 5 d of gestation. The control, Se-wheat, Se3, and Se15 treatments provided 2.5, 75, 75, and 375 microg/kg of BW of Se, respectively. Ewe jugular blood samples were collected at 50, 64, 78, 92, 106, 120, and 134 d of gestation. Fetal serum samples were collected at necropsy on d 134. In Exp. 2, pregnant ewe lambs (n = 36; BW 53.8 +/- 1.3 kg) were allotted randomly to treatments in a 2 x 2 factorial arrangement. Factors were nutrition (control, 100% of requirements vs. restricted nutrition, 60% of control) and dietary Se (adequate Se, 6 microg/kg of BW vs. high Se, 80 microg/kg of BW). Selenium treatments were initiated 21 d before breeding, and nutritional treatments were initiated on d 64 of gestation. Diets were 16% CP and 2.12 Mcal/kg of ME (DM basis). Blood samples were collected from the ewes at 62, 76, 90, 104, 118, 132, and 135 d of gestation. Fetal blood was collected at necropsy on d 135. In Exp.1, dietary Se source and concentration had no effect (P > 0.17) on maternal and fetal serum IGF-I, triiodothyronine (T(3)), or thyroxine (T(4)) concentrations. Selenium supplementation increased (P = 0.06) the T(4):T(3) ratio vs. controls. In Exp. 2, dietary Se had no impact (P > 0.33) on main effect means for maternal and fetal serum IGF-I, T(3), or T(4) concentrations from d 62 to 132; however, at d 135, high-Se ewes had lower (P = 0.01) serum T(4) concentrations than adequate-Se ewes. A nutrition by Se interaction (P = 0.06) was detected for the T(4):T(3) ratios; ewes fed restricted and adequate-Se diets had greater (P = 0.10) T(4):T(3) ratios compared with the other treatments. Nutrient-restricted ewes had lower (P < 0.05) serum IGF-I, T(3), and T(4) concentrations. Fetal serum IGF-I concentrations were lower (P = 0.01) in restricted-vs. control-fed ewes; however, fetal T(3) and T(4) concentrations were unaffected (P > 0.13) by dietary Se or maternal plane of nutrition. These data indicate that dietary Se may alter maternal T(4):T(3) ratios. In addition, nutrient restriction during gestation reduces maternal IGF-I, T(3), and T(4) and fetal IGF-I concentrations.


Available from: Kimberly A Vonnahme, Jun 02, 2015
  • Canadian Journal of Animal Science 06/2014; 94(2):243-257. DOI:10.4141/cjas2013-188 · 0.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or "catch up" postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life.
    Journal of Endocrinology 02/2014; DOI:10.1530/JOE-13-0567 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives were to examine effects of selenium (Se) supply and maternal nutritional plane during gestation on placental size at term and maternal endocrine profiles throughout gestation and early lactation. Ewe lambs (n = 84) were allocated to treatments that included Se supply of adequate Se (ASe; 11.5 μg/kg BW) or high Se (HSe; 77 μg/kg BW) initiated at breeding and nutritional plane of 60% (RES), 100% (CON), or 140% (EXC) of requirements beginning on day 40 of gestation. At parturition, lambs were removed from their dams, and ewes were transitioned to a common diet that met requirements of lactation. Blood samples were taken from a subset of ewes (n = 42) throughout gestation, during parturition, and throughout lactation to determine hormone concentrations. Cotyledon number was reduced (P = 0.03) in RES and EXC ewes compared with CON ewes. Placental delivery time tended (P = 0.08) to be shorter in HSe ewes than in ASe ewes, whereas placental delivery time was longer (P = 0.02) in RES ewes than in CON and EXC ewes. During gestation, maternal progesterone, estradiol-17β, and GH were increased (P < 0.05) in RES ewes and decreased (P < 0.05) in EXC ewes compared with CON ewes. In contrast, maternal cortisol, IGF-I, prolactin, triiodothyronine, and thyroxine were decreased in RES ewes and increased in EXC ewes compared with CON ewes during gestation. Selenium supply did not alter maternal hormone profiles during gestation. During parturition and lactation, maternal hormone concentrations were influenced by both Se and maternal nutritional plane. During the parturient process, HSe ewes tended to have greater (P = 0.06) concentrations of estradiol-17β than ASe ewes. Three hours after parturition a surge of GH was observed in ASe-RES ewes that was muted in HSe-RES ewes and not apparent in other ewes. Growth hormone area under the curve during the parturient process was increased (P < 0.05) in ASe-RES vs HSe-RES ewes. Ewes that were overfed during gestation had reduced (P < 0.05) estradiol-17β but greater IGF-I, triiodothyronine, and thyroxine (P < 0.05) compared with RES ewes. Even though ewes were transitioned to a common diet after parturition, endocrine status continued to be affected into lactation. Moreover, it appears that gestational diet may partially affect lactational performance through altered endocrine status.
    Domestic Animal Endocrinology 10/2013; DOI:10.1016/j.domaniend.2013.09.006 · 1.78 Impact Factor