Article

Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon

Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
Nucleic Acids Research (Impact Factor: 9.11). 05/2008; 36(6):2032-46. DOI: 10.1093/nar/gkn046
Source: PubMed

ABSTRACT A comparative genomic approach was used to reconstruct transcriptional regulation of NAD biosynthesis in bacteria containing orthologs of Bacillus subtilis gene yrxA, a previously identified niacin-responsive repressor of NAD de novo synthesis. Members of YrxA family (re-named here NiaR) are broadly conserved in the Bacillus/Clostridium group and in the deeply branching Fusobacteria and Thermotogales lineages. We analyzed upstream regions of genes associated with NAD biosynthesis to identify candidate NiaR-binding DNA motifs and assess the NiaR regulon content in these species. Representatives of the two distinct types of candidate NiaR-binding sites, characteristic of the Firmicutes and Thermotogales, were verified by an electrophoretic mobility shift assay. In addition to transcriptional control of the nadABC genes, the NiaR regulon in some species extends to niacin salvage (the pncAB genes) and includes uncharacterized membrane proteins possibly involved in niacin transport. The involvement in niacin uptake proposed for one of these proteins (re-named NiaP), encoded by the B. subtilis gene yceI, was experimentally verified. In addition to bacteria, members of the NiaP family are conserved in multicellular eukaryotes, including human, pointing to possible NaiP involvement in niacin utilization in these organisms. Overall, the analysis of the NiaR and NrtR regulons (described in the accompanying paper) revealed mechanisms of transcriptional regulation of NAD metabolism in nearly a hundred diverse bacteria.

Download full-text

Full-text

Available from: Irina Rodionova, Jul 02, 2015
0 Followers
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAD+ plays multiple, essential roles in the cell. As a cofactor in many redox reactions it is key in the cellular energy metabolism and as a substrate it participates in many reactions leading to a variety of covalent modifications of enzymes with major roles in regulation of expression and metabolism. Cells may have the ability to produce this metabolite either via alternative de novo synthesis pathways and/or by different salvage pathways. In this issue of Molecular Microbiology, Gazanion et al. (2011) demonstrate that Leishmania species can only rely on the salvage of NAD+ building blocks. One of the enzymes involved, nicotinamidase, is absent from human cells. The enzyme is important for growth of Leishmania infantum and essential for establishing an infection. The crystal structure of the parasite protein has been solved and shows prospects for design of inhibitors to be used as leads for development of new drugs. Indeed, NAD+ metabolism is currently being considered as a promising drug target in various diseases and the vulnerability of Leishmania for interference of this metabolism has been proved in previous work by the same group, by showing that administration of NAD+ precursors has detrimental effect on the pathogenic, amastigote stage of this parasite.
    Molecular Microbiology 08/2011; 82(1):4-8. DOI:10.1111/j.1365-2958.2011.07810.x · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biochemistry of nicotinic acid (NA) degradation is known but the transcriptional control of the genes involved is still poorly studied. We report here the transcriptional regulatory circuit of the nic genes responsible for the aerobic degradation of NA in Pseudomonas putida KT2440. The three NA-inducible catabolic operons, i.e. nicAB, encoding the upper pathway that converts NA into 6-hydroxynicotinic acid (6HNA), and the nicCDEFTP and nicXR operons, responsible for channelling 6HNA to the central metabolism, are driven by the Pa, Pc and Px promoters respectively. The nicR regulatory gene encodes a MarR-like protein that represses the activity of the divergent Pc and Px promoters being 6HNA the inducer molecule. A new gene, nicS, that is associated to the nicAB genes in the genomes of different γ- and β-Proteobacteria, encodes a TetR-like regulator that represses the activity of Pa in the absence of the NA/6HNA inducers. The NA regulatory circuit in P. putida has evolved an additional repression loop based on the NicR-dependent cross regulation of the nicS gene, thus assuring a tight transcriptional control of the catabolic genes that may prevent depletion of this vitamin B3 when needed for the synthesis of essential cofactors.
    Environmental Microbiology 03/2011; 13(7):1718-32. DOI:10.1111/j.1462-2920.2011.02471.x · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since their discovery in the 1960s as 'osmotic shock-sensitive' transporters, a plethora of so-called binding protein-dependent (canonical) ATP-binding cassette (ABC) importers has been identified in bacteria and archaea. Their cellular functions go far beyond the uptake of nutrients. Canonical ABC importers play important roles in the maintenance of cell integrity, responses to environmental stresses, cell-to-cell communication and cell differentiation and in pathogenicity. A new class of abundant micronutrient importers, the 'energy-coupling factor' (ECF) transporters, was originally identified by functional genomics. ABC ATPases are an integral part of both canonical ABC and ECF importers. Fundamental differences include the modular architecture and the independence of ECF systems of extracytoplasmic solute-binding proteins. This review describes the roles of both types of transporters in diverse physiological processes including pathogenesis, points to the differences in modular assembly and depicts their common traits.
    FEMS microbiology reviews 04/2010; 35(1):3-67. DOI:10.1111/j.1574-6976.2010.00230.x · 13.81 Impact Factor