Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation

Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Thrombosis and Haemostasis (Impact Factor: 5.76). 03/2008; 99(2):343-51. DOI: 10.1160/TH07-10-0608
Source: PubMed

ABSTRACT P-selectin inhibition has been evaluated as a therapeutic for prevention and treatment of venous thrombosis. In this study, a novel oral small-molecule inhibitor of P-selectin, PSI-421, was evaluated in a baboon model of stasis induced deep vein thrombosis (DVT). Experimental groups included i) primates receiving a single oral dose of 1 mg/kg PSI-421 two days prior and continued six days after thrombosis (n = 3); ii) primates receiving a single daily subcutaneous dose of 0.57 mg/kg enoxaparin sodium two days prior and continued six days post thrombosis (n = 3); and iii) primates receiving no treatment (n = 3). PSI-421 treated primates had greater percent vein reopening and less vein wall inflammation than the enoxaparin and controls at day 6. Microparticle tissue factor activity (MPTFA) was significantly lower in the animals receiving PSI-421 immediately after thrombosis (T+6 hours day 0) suggesting lower potential for thrombogenesis in these animals. PSI-421 also reduced soluble P-selectin levels versus controls at T+6 hours day 0, day 2 and 6. Experimental animals in any group showed no adverse effects on coagulation. This study is the first to demonstrate a reduction in MPTFA associated with vein reopening and reduced vein inflammation due to oral P-selectin inhibition in a baboon model of DVT.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aptamers are oligonucleotides targeting protein-protein interactions with pharmacokinetic profiles and activity reversal options. Although P-selectin and von Willebrand factor (vWF) have been implicated in the development of venous thrombosis (VT), no studies have directly compared aptamer efficacy with standard of care in VT. In this study, ARC5692, an anti-P-selectin aptamer, and ARC15105, an anti-vWF aptamer, were compared with low-molecular-weight heparin, enoxaparin, to test the efficacy of P-selectin or vWF inhibition in promoting thrombus resolution and preventing vein wall fibrosis, in a baboon model of VT. Groups were as follows: treatment arm: animals received P-selectin or vWF aptamer inhibitors or enoxaparin (n=3 per group). Controls received no treatment (n=3). Prophylactic arm: animals received P-selectin inhibitor (n=4) or vWF inhibitor (n=3). Treatment arm: P-selectin-inhibitor demonstrated a significant improvement in vein recanalization by magnetic resonance venography (73% at day 21), and significantly decreased vein wall collagen, compared with all groups. Anti-P-selectin equaled enoxaparin in maintaining valve competency by ultrasound. All control animals had compromised valve competency post thrombosis. Prophylactic arm: animals receiving P-selectin and vWF inhibitors demonstrated improved vein recanalization by magnetic resonance venography versus controls (80% and 85%, respectively, at day 21). Anti-P-selectin protected iliac valve function better than anti-vWF, and both improved valve function versus controls. No adverse bleeding events were observed. The P-selectin inhibitor aptamer promoted iliac vein recanalization, preserved valve competency, and decreased vein wall fibrosis. The results of this work suggest that P-selectin inhibition maybe an ideal target in the treatment and prophylaxis of deep VT, warranting clinical trials. © 2015 American Heart Association, Inc.
    Arteriosclerosis Thrombosis and Vascular Biology 02/2015; DOI:10.1161/ATVBAHA.114.304457 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: M Microparticles are small membrane fragments shed primarily from blood and endothelial cells during either activation or apoptosis. There is mounting evidence suggesting that microparticles perform a large array of biological functions and contribute to various diseases. Of these disease processes, a significant link has been established between microparticles and venous thromboembolism. Advances in research on the role of microparticles in thrombosis have yielded crucial insights into possible mechanisms, diagnoses and therapeutic targets of venous thromboembolism. In this review, we discuss the definition and properties of microparticles and venous thromboembolism, provide a synopsis of the evidence detailing the contributions of microparticles to venous thromboembolism, and propose potential mechanisms, by which venous thromboembolism occurs. Moreover, we illustrate a possible role of microparticles in cancer-related venous thromboembolism.
    Acta Pharmacologica Sinica 08/2014; 35(9). DOI:10.1038/aps.2014.73 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that aspirin, an irreversible inhibitor of platelet cyclooxygenase activity, is effective in secondary prevention of arterial thromboembolic events. The pooled results of the recent randomized, multicenter WARFASA and ASPIRE aspirin trials showed a 32% reduction in the rate of recurrence of venous thromboembolism (VTE) in patients receiving aspirin following VTE. These clinical data support evidence that platelets contribute to the initiation and progression of venous thrombosis and aspirin inhibits thrombin formation and thrombin-mediated coagulant reactions. In addition to the known acetylation of serine 529 residue in platelet cyclooxygenase-1, the postulated mechanisms of aspirin-induced antithrombotic actions also involves the acetylation of other proteins in blood coagulation; including fibrinogen resulting in more efficient fibrinolysis. This review summarizes current knowledge on the aspirin-induced antithrombotic effects which potentially explain clinical studies showing reduced rates of VTE events in aspirin-treated subjects.This article is protected by copyright. All rights reserved.
    Journal of Thrombosis and Haemostasis 09/2014; 12(11). DOI:10.1111/jth.12728 · 5.55 Impact Factor