Article

A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures.

Department of Genome Sciences, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, Washington 98195, USA.
Nature Genetics (Impact Factor: 29.65). 04/2008; 40(3):322-8. DOI: 10.1038/ng.93
Source: PubMed

ABSTRACT We report a recurrent microdeletion syndrome causing mental retardation, epilepsy and variable facial and digital dysmorphisms. We describe nine affected individuals, including six probands: two with de novo deletions, two who inherited the deletion from an affected parent and two with unknown inheritance. The proximal breakpoint of the largest deletion is contiguous with breakpoint 3 (BP3) of the Prader-Willi and Angelman syndrome region, extending 3.95 Mb distally to BP5. A smaller 1.5-Mb deletion has a proximal breakpoint within the larger deletion (BP4) and shares the same distal BP5. This recurrent 1.5-Mb deletion contains six genes, including a candidate gene for epilepsy (CHRNA7) that is probably responsible for the observed seizure phenotype. The BP4-BP5 region undergoes frequent inversion, suggesting a possible link between this inversion polymorphism and recurrent deletion. The frequency of these microdeletions in mental retardation cases is approximately 0.3% (6/2,082 tested), a prevalence comparable to that of Williams, Angelman and Prader-Willi syndromes.

Full-text

Available from: Corrado Romano, Jun 02, 2015
0 Followers
 · 
340 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons derived from human induced pluripotent stem cells (iPSCs) represent a potentially valuable tool for the characterisation of neuronal receptors and ion channels. Previous studies on iPSC-derived neuronal cells have reported the functional characterisation of a variety of receptors and ion channels, including glutamate receptors, γ-aminobutyric acid (GABA) receptors and several voltage-gated ion channels. In the present study we have examined the expression and functional properties of nicotinic acetylcholine receptors (nAChRs) in human iPSC-derived neurons. Gene expression analysis indicated the presence of transcripts encoding several nAChR subunits, with highest levels detected for α3-α7, β1, β2 and β4 subunits (encoded by CHRNA3-CHRNA7, CHRNB1, CHRNB2 and CHRNB4 genes). In addition, similarly high transcript levels were detected for the truncated dupα7 subunit transcript, encoded by the partially duplicated gene CHRFAM7A, which has been associated with psychiatric disorders such as schizophrenia. The functional properties of these nAChRs have been examined by calcium fluorescence and by patch-clamp recordings. The data obtained suggest that the majority of functional nAChRs expressed in these cells have pharmacological properties typical of α7 receptors. Large responses were induced by a selective α7 agonist (compound B), in the presence of the α7-selective positive allosteric modulator (PAM) PNU-120596, which were blocked by the α7-selective antagonist methyllycaconitine (MLA). In addition, a small proportion of the neurons express nAChRs with properties typical of heteromeric (non-α7 containing) nAChR subtypes. These cells therefore represent a great tool to advance our understanding of the properties of native human nAChRs, α7 in particular.
    PLoS ONE 04/2015; 10(4):e0125116. DOI:10.1371/journal.pone.0125116 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A variety of genetic disorders of known etiology present with behavioral profiles similar to that described in autism spectrum disorders (ASDs). Although some of these disorders are more likely to be associated with a comorbid ASD diagnosis, there exist cases in which there is a lack of empirical evidence to support a dual diagnosis. Two disorders, Williams syndrome (WS) and 15q13.3 deletion syndrome, have both been reported in the literature as examples of this phenotypic overlap. We present a case study of a young child with both WS and 15q13.3 deletion syndrome and significant ASD-related symptomatology. The results of a developmental evaluation, specifically the rationale for ruling out a comorbid ASD, are the focus of the present report. Implications for careful diagnostic consideration in cases of patients with known genetic conditions are also discussed.
    Journal of Developmental and Physical Disabilities 02/2015; 27(1). DOI:10.1007/s10882-014-9404-2 · 0.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism. © 2015 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 02/2015; 167(4). DOI:10.1002/ajmg.a.36847 · 2.05 Impact Factor