Article

Source identification of PCDD/Fs in agricultural soils near to a Chinese MSWI plant through isomer-specific data analysis.

Institute for Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China.
Chemosphere (Impact Factor: 3.14). 05/2008; 71(6):1144-55. DOI: 10.1016/j.chemosphere.2007.10.032
Source: PubMed

ABSTRACT Isomer-specific data were investigated in order to identify the sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in agricultural soils, including Fluvo-aquic and paddy soils, in the vicinity of a Chinese municipal solid waste incineration (MSWI) plant. Homologue and isomer profiles of PCDD/Fs in soils were compared with those of potential sources, including combustion sources, i.e., MSWI flue gas and fly ash; and the impurities in agrochemicals, such as the pentachlorophenol (PCP), sodium pentachlorophenate (PCP-Na) and 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP). The results showed that the PCDD/F isomer profiles of combustion sources and agricultural soils were very similar, especially for PCDFs, although their homologue profiles varied, indicating that all the isomers within each homologue behave identically in the air and soil. Moreover, factor analysis of the isomer compositions among 33 soil samples revealed that the contamination of PCDD/Fs in agricultural soils near the MSWI plant were primarily influenced by the combustion sources, followed by the PCP/PCP-Na and CNP sources. This implication is consistent with our previous findings based on chemometric analysis of homologue profiles of soil and flue gas samples, and identifies PCP/PCP-Na as an additional important source of PCDD/Fs in the local area. This makes the similarities and differences of isomer profiles between Fluvo-aquic and paddy soils more explainable. It is, therefore, advisable to use isomer-specific data for PCDD/F source identifications where possible.

0 Bookmarks
 · 
61 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polychlorinated-dibenzo-p-dioxins and -dibenzofurans (PCDD/Fs) were measured in soils and sediments from the Yellow Sea region. Korean soils and sediments mostly contained detectable PCDD/Fs and showed a widespread distribution among locations. Soil and sedimentary PCDD/Fs from China were comparable to or less than those in Korea. The patterns of relative concentrations of individual congeners in soils were different between the two countries, but similar in sediments. Sources of PCDD/Fs in China and Korea were found to be independent of each other and their distributions reflected matrix-dependent accumulation. Spatial distribution indicated some point sources in Korea while Chinese sources were more widespread and diffuse. PCDD/Fs measured in the coastal areas of the Yellow Sea were comparable to or less than those previously reported in for eastern Asia. However, ∑TEQs in soils and sediments were near to or, in some cases exceeded environmental quality guidelines.
    Environmental Pollution 04/2011; 159(4):907-17. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In comparison with metals, long-fiber reinforced composites have a layered structure, with different properties throughout their thickness. When drilling such structures, internal defects like delamination occur, caused by the drilling loads and their uneven distribution among the plies. The current experimental analysis is focused towards determining the cutting loads distribution (axial and tangential) along the work-piece thickness and tool radius by analyzing the thrust and torque curves when drilling with 3 different drills carbon-fiber (CFRP) and glass-fiber (GFRP) reinforced composite plates. A wide range of cutting parameters is tested. The highest loads are found at the tool tip in the vicinity of the chisel edge for all cases. It is also found that the maximum load per ply varies mainly with the axial feed rate and tool geometry, while the spindle speed has little or no influence. The analysis is useful for selecting the cutting parameters for delamination free drilling and also for conducting drill geometry optimizations.
    International Journal of Machine Tools & Manufacture - INT J MACH TOOL MANUF. 01/2011; 51(12):937-946.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to better understand the environmental behaviors of persistent organic pollutants, the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were investigated in twenty-three soil/sediment samples from Baiying City, Northwest China, in 2008. The possible sources and potential health risk of PCDD/Fs were also discussed. The concentrations of PCDD/Fs in nineteen soil samples varied between 20.13 and 496.26 pg/g dry weight (dw.), with an average value of 125.59 pg/g dw. The highest International Toxic Equivalent (I-TEQ) of PCDD/Fs (8.34 pg/g dw.) in soil was found at sample S1 collected from proximity to a copper metallurgy plant. The concentrations of PCDD/Fs in four sediment samples ranged from 37.69 to 491.49 pg/g dw., with an average value of 169.95 pg/g dw. The highest I-TEQ of PCDD/Fs (8.56 pg/g dw.) in sediment was found at sample S12 collected from the East big ditch with waste water discharged into the Yellow River. The results indicated that PCDD/Fs contamination of soil/sediment is originated from three sources: chlorine-containing chemicals, non-ferrous metal industrial PCDD/Fs emission and coal burning. The health risk exposure to PCDD/Fs through soil, dust ingestion and dermal absorption ranged from 0.0006 to 0.0134 pg/kg/day Word Health Organization's toxic equivalent in 1998 (WHO1998-TEQ) with mean values 0.0032 pg WHO1998-TEQ for adults and varied between 0.0012 and 0.0256 pg/kg/day WHO1998-TEQ with mean values 0.006 pg/kg/day WHO1998-TEQ for children, respectively. These results indicated that health risk of PCDD/Fs for children should be paid more attention.
    Environmental Geochemistry and Health 06/2013; · 2.08 Impact Factor