Article

Molecular determinants of Rem2 regulation of N-type calcium channels.

Department of Physiology & Biophysics, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, Canada T2N 4N1.
Biochemical and Biophysical Research Communications (Impact Factor: 2.41). 05/2008; 368(3):827-31. DOI: 10.1016/j.bbrc.2008.02.020
Source: PubMed

ABSTRACT Rem2 belongs to the RGK family of small GTPases whose members are known to interact with the voltage gated calcium channel beta subunit, and to inhibit or abolish calcium currents. To identify the underlying functional domains of Rem2, we created several N- or C-terminally truncated Rem2 proteins and examined their abilities to interact with the Ca(v) beta subunit and to regulate the activities of Ca(v)2.2 N-type calcium channels. Confocal imaging of Rem2 in tsA-201 cells revealed that it contains a membrane-targeting signal in its C-terminus, consistent with previous studies. Co-precipitation assays showed that Ca(v) beta(3) interaction depends on Rem2 residues 1-123. Only Rem2 proteins that targeted the cell membrane as well as bound the beta subunit were able to reduce whole cell calcium currents.

0 Bookmarks
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Work in heterologous systems has revealed that members of the Rad, Rem, Rem2, Gem/Kir (RGK) family of small GTP-binding proteins profoundly inhibit L-type Ca(2+) channels via three mechanisms: 1), reduction of membrane expression; 2), immobilization of the voltage-sensors; and 3), reduction of Po without impaired voltage-sensor movement. However, the question of which mode is the critical one for inhibition of L-type channels in their native environments persists. To address this conundrum in skeletal muscle, we overexpressed Rad and Rem in flexor digitorum brevis (FDB) fibers via in vivo electroporation and examined the abilities of these two RGK isoforms to modulate the L-type Ca(2+) channel (CaV1.1). We found that Rad and Rem both potently inhibit L-type current in FDB fibers. However, intramembrane charge movement was only reduced in fibers transfected with Rad; charge movement for Rem-expressing fibers was virtually identical to charge movement observed in naïve fibers. This result indicated that Rem supports inhibition solely through a mechanism that allows for translocation of CaV1.1's voltage-sensors, whereas Rad utilizes at least one mode that limits voltage-sensor movement. Because Rad and Rem differ significantly only in their amino-termini, we constructed Rad-Rem chimeras to probe the structural basis for the distinct specificities of Rad- and Rem-mediated inhibition. Using this approach, a chimera composed of the amino-terminus of Rem and the core/carboxyl-terminus of Rad inhibited L-type current without reducing charge movement. Conversely, a chimera having the amino-terminus of Rad fused to the core/carboxyl-terminus of Rem inhibited L-type current with a concurrent reduction in charge movement. Thus, we have identified the amino-termini of Rad and Rem as the structural elements dictating the specific modes of inhibition of CaV1.1.
    Biophysical Journal 05/2014; 106(9):1950-7. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rem2 is a member of the RGK family of small Ras-like GTPases whose expression and function is regulated by neuronal activity in the brain. A number of questions still remain as to the endogenous functions of Rem2 in neurons. RNAi-mediated Rem2 knockdown leads to an increase in dendritic complexity and a decrease in functional excitatory synapses, though a recent report challenged the specificity of Rem2-targeted RNAi reagents. In addition, overexpression in a number of cell types has shown that Rem2 can inhibit voltage-gated calcium channel (VGCC) function, while studies employing RNAi-mediated knockdown of Rem2 have failed to observe a corresponding enhancement of VGCC function. To further investigate these discrepancies and determine the endogenous function of Rem2, we took a comprehensive, loss-of-function approach utilizing two independent, validated Rem2-targeted shRNAs to analyze Rem2 function. We sought to investigate the consequence of endogenous Rem2 knockdown by focusing on the three reported functions of Rem2 in neurons: regulation of synapse formation, dendritic morphology, and voltage-gated calcium channels. We conclude that endogenous Rem2 is a positive regulator of functional, excitatory synapse development and a negative regulator of dendritic complexity. In addition, while we are unable to reach a definitive conclusion as to whether the regulation of VGCCs is an endogenous function of Rem2, our study reports important data regarding RNAi reagents for use in future investigation of this issue.
    PLoS ONE 01/2013; 8(8):e74751. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+) influx via L-type voltage-gated Ca(2+) channels supports the plateau phase of ventricular action potentials and is the trigger for excitation-contraction (EC) coupling in the myocardium. Rad, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of monomeric G proteins, regulates ventricular action potential duration and EC coupling gain through its ability to inhibit cardiac L-type channel activity. In this study, we have investigated the potential dysfunction of a naturally occurring Rad variant (Q66P) that has been associated with congestive heart failure in humans. Specifically, we have tested whether Rad Q66P limits, or even eliminates, the inhibitory actions of Rad on CaV1.2 and CaV1.3, the two L-type channel isoforms known to be expressed in the heart. We have found that mouse Rad Q65P (the murine equivalent of human Rad Q66P) inhibits L-type currents conducted by CaV1.2 or CaV1.3 channels as potently as wild-type Rad (>95% inhibition of both channels). In addition, Rad Q65P attenuates the gating movement of both channels as effectively as wild-type Rad, indicating that the Q65P substitution does not differentially impair any of the three described modes of L-type channel inhibition by RGK proteins. Thus, we conclude that if Rad Q66P contributes to cardiomyopathy, it does so via a mechanism that is not related to its ability to inhibit L-type channel-dependent processes per se. However, our results do not rule out the possibility that decreased expression, mistargeting or altered regulation of Rad Q66P may reduce the RGK protein's efficacy in vivo.
    Biochemical and Biophysical Research Communications 08/2013; · 2.41 Impact Factor

Full-text

View
51 Downloads
Available from
Jun 2, 2014