Article

The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends.

Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Genes & Development (Impact Factor: 12.64). 03/2008; 22(4):512-27. DOI: 10.1101/gad.1631908
Source: PubMed

ABSTRACT Mycobacteria can repair DNA double-strand breaks (DSBs) via a nonhomologous end-joining (NHEJ) system that includes a dedicated DNA ligase (LigD) and the DNA end-binding protein Ku. Here we exploit an improved plasmid-based NHEJ assay and a collection of Mycobacterium smegmatis strains bearing deletions or mutations in Ku or the DNA ligases to interrogate the contributions of LigD's three catalytic activities (polymerase, ligase, and 3' phosphoesterase) and structural domains (POL, LIG, and PE) to the efficiency and molecular outcomes of NHEJ in vivo. By analyzing in parallel the repair of blunt, 5' overhang, and 3' overhang DSBs, we discovered a novel end-joining pathway specific to breaks with 3' overhangs that is Ku- and LigD-independent and perfectly faithful. This 3' overhang NHEJ pathway is independent of ligases B and C; we surmise that it relies on NAD(+)-dependent LigA, the essential replicative ligase. We find that efficient repair of blunt and 5' overhang DSBs depends stringently on Ku and the LigD POL domain, but not on the LigD polymerase activity, which mainly serves to promote NHEJ infidelity. The lack of an effect of PE-inactivating LigD mutations on NHEJ outcomes, especially the balance between deletions and insertions at blunt or 5' overhang breaks, argues against LigD being the catalyst of deletion formation. Ligase-inactivating LigD mutations (or deletion of the LIG domain) have a modest impact on the efficiency of blunt and 5' overhang DSB repair, because the strand sealing activity can be provided in trans by one of the other resident ATP-dependent ligases (likely LigC). Reliance on the backup ligase is accompanied by a drastic loss of fidelity during blunt end and 5' overhang DSB repair. We conclude that the mechanisms of mycobacterial NHEJ are many and the outcomes depend on the initial structures of the DSBs and the available ensemble of end-processing and end-sealing components, which are not limited to Ku and LigD.

0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.
    DNA repair 05/2014; 17. DOI:10.1016/j.dnarep.2014.02.007 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions.
    Biochemistry and Cell Biology 02/2013; 91(1):31-41. DOI:10.1139/bcb-2012-0058 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Counterselectable markers are powerful tools in genetics because they allow selection for loss of a genetic marker rather than its presence. In mycobacteria, a widely used counterselectable marker is the gene encoding levan sucrase (sacB), which confers sensitivity to sucrose, but frequent spontaneous inactivation complicates its use. Here we show that the Escherichia coli galactokinase gene (galK) can be used as a counterselectable marker in both Mycobacterium smegmatis and Mycobacterium tuberculosis. Expression of E. coli galK, but not the putative M. tuberculosis galK, conferred sensitivity to 2-deoxy-galactose (2-DOG) in both M. smegmatis and M. tuberculosis. We tested the utility of E. coli galK as a counterselectable marker in mycobacterial recombination, both alone and in combination with sacB. We found that 0.5% 2-DOG effectively selected recombinants that had lost the galK marker with the ratio of galK loss/galK mutational inactivation of approximately 1:4. When we combined galK and sacB as dual counterselectable markers and selected for dual marker loss on 0.2% 2-DOG/5% sucrose, 98.6-100% of sucrose/2-DOG resistant clones had undergone recombination, indicating that the frequency of mutational inactivation of both markers was lower than the recombination frequency. These results establish a new counterselectable marker system for use in mycobacteria that can shorten the time to generate unmarked mutations in M. smegmatis and M. tuberculosis.
    Gene 01/2011; 470(1-2):31-6. DOI:10.1016/j.gene.2010.09.005 · 2.08 Impact Factor