Nonequilibrium molecular dynamics simulations with a backward-forward trajectories sampling for multidimensional infrared spectroscopy of molecular vibrational modes.

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan.
The Journal of Chemical Physics (Impact Factor: 3.12). 03/2008; 128(6):064511. DOI: 10.1063/1.2828189
Source: PubMed

ABSTRACT A full molecular dynamics (MD) simulation approach to calculate multidimensional third-order infrared (IR) signals of molecular vibrational modes is proposed. Third-order IR spectroscopy involves three-time intervals between three excitation and one probe pulses. The nonequilibrium MD (NEMD) simulation allows us to calculate molecular dipoles from nonequilibrium MD trajectories for different pulse configurations and sequences. While the conventional NEMD approach utilizes MD trajectories started from the initial equilibrium state, our approach does from the intermediate state of the third-order optical process, which leads to the doorway-window decomposition of nonlinear response functions. The decomposition is made before the second pump excitation for a two-dimensional case of IR photon echo measurement, while it is made after the second pump excitation for a three-dimensional case of three-pulse IR photon echo measurement. We show that the three-dimensional IR signals are efficiently calculated by using the MD trajectories backward and forward in time for the doorway and window functions, respectively. We examined the capability of the present approach by evaluating the signals of two- and three-dimensional IR vibrational spectroscopies for liquid hydrogen fluoride. The calculated signals might be explained by anharmonic Brownian model with the linear-linear and square-linear system-bath couplings which was used to discuss the inhomogeneous broadening and dephasing mechanism of vibrational motions. The predicted intermolecular librational spectra clearly reveal the unusually narrow inhomogeneous linewidth due to the one-dimensional character of HF molecule and the strong hydrogen bond network.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the wavefunction (WF) version of the equation-of-motion phase-matching approach (EOM-PMA) for the calculation of four-wave-mixing (4WM) optical signals. For the material system, we consider a general electronic-vibrational Hamiltonian, comprising the electronic ground state, a manifold of singly-excited electronic states, and a manifold of doubly-excited electronic states. We show that the calculation of the third-order polarization for particular values of the pulse delay times and in a specific phase-matching direction requires 6 independent WF propagations within the rotating wave approximation. For material systems without optical transitions to doubly-excited electronic states, the number of WF propagations is reduced to 5. The WF EOM-PMA automatically accounts for pulse-overlap effects and allows the efficient numerical calculation of 4WM signals for vibronically coupled multimode material systems. The application of the method is illustrated for model systems with strong electron-vibrational and electronic inter-state couplings.
    Chemical Physics 08/2013; · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many efforts have been devoted to elucidating the intra- and intermolecular dynamics of liquid water because of their important roles in many fields of science and engineering. Nonlinear spectroscopy is a powerful tool to investigate the dynamics. Because nonlinear response functions are described by more than one time variable, it is possible to analyze static and dynamic mode couplings. Here we review the intra- and intermolecular dynamics of liquid water revealed by recent linear and nonlinear spectroscopic experiments and computer simulations. In particular, we discuss the population relaxation, anisotropy decay, and spectral diffusion of the intra- and intermolecular motions of water and their temperature dependence, which play important roles in ultrafast dynamics and relaxations in water. Expected final online publication date for the Annual Review of Physical Chemistry Volume 64 is March 31, 2013. Please see for revised estimates.
    Annual Review of Physical Chemistry 12/2012; · 13.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The workhorse spectroscopy for studying liquid-state solvation dynamics, time-dependent fluorescence, provides a powerful, but strictly limited, perspective on the solvation process. It forces the evolution of the solute-solvent interaction energy to act as a proxy for what may be fairly involved changes in solvent structure. We suggest that an alternative, a recently demonstrated solute-pump∕solvent-probe experiment, can serve as a kind of two-dimensional solvation spectroscopy capable of separating out the structural and energetic aspects of solvation. We begin by showing that one can carry out practical, molecular-level, calculations of these spectra by means of a hybrid theory combining instantaneous-normal-mode ideas with molecular dynamics. Applying the resulting formalism to a model system displaying preferential solvation reveals that the solvent composition changes near the solute do indeed display slow dynamics similar to, but measurably different from, that of the solute-solvent interaction - and that this two-dimensional spectroscopy can effectively single out those local structural changes.
    The Journal of Chemical Physics 07/2013; 139(4):044506. · 3.12 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014