Article

A high-density SNP genome-wide linkage scan in a large autism extended pedigree

Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.
Molecular Psychiatry (Impact Factor: 15.15). 03/2008; 14(6):590-600. DOI: 10.1038/mp.2008.14
Source: PubMed

ABSTRACT We performed a high-density, single nucleotide polymorphism (SNP), genome-wide scan on a six-generation pedigree from Utah with seven affected males, diagnosed with autism spectrum disorder. Using a two-stage linkage design, we first performed a nonparametric analysis on the entire genome using a 10K SNP chip to identify potential regions of interest. To confirm potentially interesting regions, we eliminated SNPs in high linkage disequilibrium (LD) using a principal components analysis (PCA) method and repeated the linkage results. Three regions met genome-wide significance criteria after controlling for LD: 3q13.2-q13.31 (nonparametric linkage (NPL), 5.58), 3q26.31-q27.3 (NPL, 4.85) and 20q11.21-q13.12 (NPL, 5.56). Two regions met suggestive criteria for significance 7p14.1-p11.22 (NPL, 3.18) and 9p24.3 (NPL, 3.44). All five chromosomal regions are consistent with other published findings. Haplotype sharing results showed that five of the affected subjects shared more than a single chromosomal region of interest with other affected subjects. Although no common autism susceptibility genes were found for all seven autism cases, these results suggest that multiple genetic loci within these regions may contribute to the autism phenotype in this family, and further follow-up of these chromosomal regions is warranted.

Download full-text

Full-text

Available from: Hilary Coon, Jun 17, 2015
0 Followers
 · 
200 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders. Evidence indicates both disorders co-occur with a high frequency, in 20-50% of children with ADHD meeting criteria for ASD and in 30-80% of ASD children meeting criteria for ADHD. This review will provide an overview on all available studies [family based, twin, candidate gene, linkage, and genome wide association (GWA) studies] shedding light on the role of shared genetic underpinnings of ADHD and ASD. It is concluded that family and twin studies do provide support for the hypothesis that ADHD and ASD originate from partly similar familial/genetic factors. Only a few candidate gene studies, linkage studies and GWA studies have specifically addressed this co-occurrence, pinpointing to some promising pleiotropic genes, loci and single nucleotide polymorphisms (SNPs), but the research field is in urgent need for better designed and powered studies to tackle this complex issue. We propose that future studies examining shared familial etiological factors for ADHD and ASD use a family-based design in which the same phenotypic (ADHD and ASD), candidate endophenotypic, and environmental measurements are obtained from all family members. Multivariate multi-level models are probably best suited for the statistical analysis.
    European Child & Adolescent Psychiatry 02/2010; 19(3):281-95. DOI:10.1007/s00787-010-0092-x · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism Spectrum Disorders (ASD) are phenotypically heterogeneous, characterized by impairments in the development of communication and social behaviour and the presence of repetitive behaviour and restricted interests. Dissecting the genetic complexity of ASD may require phenotypic data reflecting more detail than is offered by a categorical clinical diagnosis. Such data are available from the Social Responsiveness Scale (SRS) which is a continuous, quantitative measure of social ability giving scores that range from significant impairment to above average ability. We present genome-wide results for 64 multiplex and extended families ranging from two to nine generations. SRS scores were available from 518 genotyped pedigree subjects, including affected and unaffected relatives. Genotypes from the Illumina 6 k single nucleotide polymorphism panel were provided by the Center for Inherited Disease Research. Quantitative and qualitative analyses were done using MCLINK, a software package that uses Markov chain Monte Carlo (MCMC) methods to perform multilocus linkage analysis on large extended pedigrees. When analysed as a qualitative trait, linkage occurred in the same locations as in our previous affected-only genome scan of these families, with findings on chromosomes 7q31.1-q32.3 [heterogeneity logarithm of the odds (HLOD) = 2.91], 15q13.3 (HLOD = 3.64), and 13q12.3 (HLOD = 2.23). Additional positive qualitative results were seen on chromosomes 6 and 10 in regions that may be of interest for other neuropsychiatric disorders. When analysed as a quantitative trait, results replicated a peak found in an independent sample using quantitative SRS scores on chromosome 11p15.1-p15.4 (HLOD = 2.77). Additional positive quantitative results were seen on chromosomes 7, 9, and 19. The SRS linkage peaks reported here substantially overlap with peaks found in our previous affected-only genome scan of clinical diagnosis. In addition, we replicated a previous SRS peak in an independent sample. These results suggest the SRS is a robust and useful phenotype measure for genetic linkage studies of ASD. Finally, analyses of SRS scores revealed linkage peaks overlapping with evidence from other studies of neuropsychiatric diseases. The information available from the SRS itself may, therefore, reveal locations for autism susceptibility genes that would not otherwise be detected.
    Molecular Autism 04/2010; 1(1):8. DOI:10.1186/2040-2392-1-8 · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that efforts to identify genetic risk markers of autism spectrum disorder (ASD) would benefit from the analysis of more narrowly defined ASD phenotypes. Previous research indicates that 'insistence on sameness' (IS) and 'repetitive sensory-motor actions' (RSMA) are two factors within the ASD 'repetitive and stereotyped behavior' domain. The primary aim of this study was to identify genetic risk markers of both factors to allow comparison of those markers with one another and with markers found in the same set of pedigrees using ASD diagnosis as the phenotype. Thus, we empirically addresses the possibilities that more narrowly defined phenotypes improve linkage analysis signals and that different narrowly defined phenotypes are associated with different loci. Secondary aims were to examine the correlates of IS and RSMA and to assess the heritability of both scales. A genome-wide linkage analysis was conducted with a sample of 70 multiplex ASD pedigrees using IS and RSMA as phenotypes. Genotyping services were provided by the Center for Inherited Disease Research using the 6 K single nucleotide polymorphism linkage panel. Analysis was done using the multipoint linkage software program MCLINK, a Markov chain Monte Carlo (MCMC) method that allows for multilocus linkage analysis on large extended pedigrees. Genome-wide significance was observed for IS at 2q37.1-q37.3 (dominant model heterogeneity lod score (hlod) 3.42) and for RSMA at 15q13.1-q14 (recessive model hlod 3.93). We found some linkage signals that overlapped and others that were not observed in our previous linkage analysis of the ASD phenotype in the same pedigrees, and regions varied in the range of phenotypes with which they were linked. A new finding with respect to IS was that it is positively associated with IQ if the IS-RSMA correlation is statistically controlled. The finding that IS and RSMA are linked to different regions that only partially overlap regions previously identified with ASD as the phenotype supports the value of including multiple, narrowly defined phenotypes in ASD genetic research. Further, we replicated previous reports indicating that RSMA is more strongly associated than IS with measures of ASD severity.
    Molecular Autism 02/2010; 1(1):3. DOI:10.1186/2040-2392-1-3 · 5.49 Impact Factor