Article

Inhibition of Cdc7/Dbf4 kinase activity affects specific phosphorylation sites on MCM2 in cancer cells

Novartis Institute of Biomedical Research, Oncology, Emeryville, California 94608, USA.
Journal of Cellular Biochemistry (Impact Factor: 3.37). 06/2008; 104(3):1075-86. DOI: 10.1002/jcb.21698
Source: PubMed

ABSTRACT The Cdc7/Dbf4 kinase is required for initiation of DNA replication and also plays a role in checkpoint function in response to replication stress. Exactly how Cdc7/Dbf4 mediates those activities remains to be elucidated. Cdc7/Dbf4 physically interacts with and phosphorylates the minichromosome maintenance complex (MCM), such as MCM2, MCM4 and MCM6. Cdc7/Dbf4 activity is required for association of Cdc45 followed by recruitment of DNA polymerase on the chromatin. Using high resolution mass spectrometry, we identified six phosphorylation sites on MCM2, two of them have not been described before. We provide evidence that Cdc7/Dbf4 mediates phosphorylation on serine 108 and serine 40 on human MCM2 in vitro and in vivo in cancer cells in the absence of DNA damage. Antibodies specific to pS108 or pS40 confirmed the sites and established useful read-outs for inhibition of Cdc7/Dbf4. This report demonstrates the utility of an in vitro to in vivo workflow utilizing immunoprecipitation and mass spectrometry to map phosphorylation sites on endogenous kinase substrates. The approach can be readily generalized to identify target modulation read-outs for other potential kinase cancer targets.

0 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
    Chromosoma 10/2014; 124(1). DOI:10.1007/s00412-014-0489-2 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad 18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.
    The Journal of Cell Biology 11/2010; 191(5):953-66. DOI:10.1083/jcb.201006043 · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Target detection is a delicate process in SAR imagery. Single-point targets are often supposed to have a reflectivity level higher than the clutter mean power and one could think that a simple thresholding operation would permit their detection. Because of the speckle, however, the signal has a very high variability (especially in the one-look case) which may cause confusion between high speckle peaks and target points. The authors present optimal target detection based on radiometric criteria. Complex images permit optimal radiometric estimation by means of the spatial whitening filter, which takes spatial correlation into account. The application to ship detection on a complex fine mode Radarsat image is presented
    Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International; 08/1998