Article

The ABCA1 cholesterol transporter associates with one of two distinct dystrophin-based scaffolds in Schwann cells

Department of Physiology and Biophysics, University of Washington, 1959 NE Pacific St, Box 357290, Seattle WA 98195-7290, USA
Glia (Impact Factor: 6.03). 04/2008; 56(6):611-8. DOI: 10.1002/glia.20636
Source: PubMed

ABSTRACT Cytoskeletal scaffolding complexes help organize specialized membrane domains with unique functions on the surface of cells. In this study, we define the scaffolding potential of the Schwann cell dystrophin glycoprotein complex (DGC) by establishing the presence of four syntrophin isoforms, (alpha1, beta1, beta2, and gamma2), and one dystrobrevin isoform, (alpha-dystrobrevin-1), in the abaxonal membrane. Furthermore, we demonstrate the existence of two separate DGCs in Schwann cells that divide the abaxonal membrane into spatially distinct domains, the DRP2/periaxin rich plaques and the Cajal bands that contain Dp116, utrophin, alpha-dystrobrevin-1 and four syntrophin isoforms. Finally, we show that the two different DGCs can scaffold unique accessory molecules in distinct areas of the Schwann cell membrane. Specifically, the cholesterol transporter ABCA1, associates with the Dp116/syntrophin complex in Cajal bands and is excluded from the DRP2/periaxin rich plaques.

0 Followers
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have unmasked plectin, a uniquely versatile intermediate filament-associated cytolinker protein, to be essential for skin and skeletal muscle integrity. Different sets of isoforms of the protein were found to stabilize cells mechanically, regulate cytoskeletal dynamics, and serve as a scaffolding platform for signaling molecules. Here, we investigated whether a similar scenario prevails in myelinating Schwann cells. Using isoform-specific antibodies, the two plectin variants predominantly expressed in the cytoplasmic compartment (Cajal bands) of Schwann cells were identified as plectin (P)1 and P1c. Coimmunoprecipitation and immunolocalization experiments revealed complex formation of Cajal band plectin with β-dystroglycan, the core component of the dystrophin glycoprotein complex that in Schwann cells is crucial for the compartmentalization and stabilization of the myelin sheath. To study the functional implications of Schwann cell-specific plectin-β-dystroglycan interaction, we generated conditional (Schwann cell-restricted) plectin knockout mice. Ablation of plectin in myelinating Schwann cells (SCs) was found not to affect myelin sheath formation but to abrogate the tight association of the dystroglycan complex with the intermediate filament cytoskeleton. We show that the disruption of this association leads to the destabilization of the dystroglycan complex combined with increased myelin sheath deformations observed in the peripheral nerve during ageing of the animal.
    Glia 08/2013; 61(8). DOI:10.1002/glia.22514 · 6.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The health and function of the nervous system relies on glial cells that ensheath neuronal axons with a specialized plasma membrane termed myelin. The molecular mechanisms by which glial cells target and enwrap axons with myelin are only beginning to be elucidated, yet several studies have implicated extracellular matrix proteins and their receptors as being important extrinsic regulators. This review provides an overview of the extracellular matrix proteins and their receptors that regulate multiple steps in the cellular development of Schwann cells and oligodendrocytes, the myelinating glia of the PNS and CNS, respectively, as well as in the construction and maintenance of the myelin sheath itself. The first part describes the relevant cellular events that are influenced by particular extracellular matrix proteins and receptors, including laminins, collagens, integrins, and dystroglycan. The second part describes the signaling pathways and effector molecules that have been demonstrated to be downstream of Schwann cell and oligodendroglial extracellular matrix receptors, including FAK, small Rho GTPases, ILK, and the PI3K/Akt pathway, and the roles that have been ascribed to these signaling mediators. Throughout, we emphasize the concept of extracellular matrix proteins as environmental sensors that act to integrate, or match, cellular responses, in particular to those downstream of growth factors, to appropriate matrix attachment.
    Developmental Neurobiology 11/2011; 71(11):924-55. DOI:10.1002/dneu.20966 · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dystroglycan is a central component of the dystrophin-glycoprotein complex (DGC) that links extracellular matrix with cytoskeleton, expressed in a variety of fetal and adult tissues. Dystroglycan plays diverse roles in development and homeostasis including basement membrane formation, epithelial morphogenesis, membrane stability, cell polarization, and cell migration. In this paper, we will focus on biological role of dystroglycan in Schwann cell function, especially myelination. First, we review the molecular architecture of DGC in Schwann cell abaxonal membrane. Then, we will review the loss-of-function studies using targeted mutagenesis, which have revealed biological functions of each component of DGC in Schwann cells. Based on these findings, roles of dystroglycan in Schwann cell function, in myelination in particular, and its implications in diseases will be discussed in detail. Finally, in view of the fact that understanding the role of dystroglycan in Schwann cells is just beginning, future perspectives will be discussed.
    BioMed Research International 06/2010; 2010(1110-7243):740403. DOI:10.1155/2010/740403 · 2.71 Impact Factor