Article

Volumetric Neuroimaging of the Atlantic White-Sided Dolphin (Lagenorhynchus acutus) Brain from in situ Magnetic Resonance Images

Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology (Impact Factor: 1.53). 03/2008; 291(3):263-82. DOI: 10.1002/ar.20654
Source: PubMed

ABSTRACT The structure and development of the brain are extremely difficult to study in free-ranging marine mammals. Here, we report measurements of total white matter (WM), total gray matter (GM), cerebellum (WM and GM), hippocampus, and corpus callosum made from magnetic resonance (MR) images of fresh, postmortem brains of the Atlantic white-sided dolphin (Lagenorhynchus acutus) imaged in situ (i.e., the brain intact within the skull, with the head still attached to the body). WM:GM volume ratios of the entire brain increased from fetus to adult, illustrating the increase in myelination during ontogeny. The cerebellum (WM and GM combined) of subadult and adult dolphins ranged from 13.8 to 15.0% of total brain size, much larger than that of primates. The corpus callosum mid-sagittal area to brain mass ratios (CCA/BM) ranged from 0.088 to 0.137, smaller than in most mammals. Dolphin hippocampal volumes were smaller than those of carnivores, ungulates, and humans, consistent with previous qualitative results assessed from histological studies of the bottlenose dolphin brain. These quantitative measurements of white matter, gray matter, corpus callosum, and hippocampus are the first to be determined from MR images for any cetacean species. We establish here an approach for accurately determining the size of brain structures from in situ MR images of stranded, dead dolphins. This approach can be used not only for comparative and developmental studies of marine mammal brains but also for investigation of the potential impacts of natural and anthropogenic chemicals on neurodevelopment and neuroanatomy in exposed marine mammal populations.

Full-text

Available from: Darlene Ketten, May 30, 2015
0 Followers
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structure of the hippopotamus brain is virtually unknown because few studies have examined more than its external morphology. In view of their semi-aquatic lifestyle and phylogenetic relatedness to cetaceans, the brain of hippopotamuses represents a unique opportunity for better understanding the selective pressures that have shaped the organization of the brain during the evolutionary process of adaptation to an aquatic environment. Here we examined the histology of the cerebral cortex of the pygmy hippopotamus (Hexaprotodon liberiensis) by means of Nissl, Golgi, and calretinin (CR) immunostaining, and provide a magnetic resonance imaging (MRI) structural and volumetric dataset of the anatomy of its brain. We calculated the corpus callosum area/brain mass ratio (CCA/BM), the gyrencephalic index (GI), the cerebellar quotient (CQ), and the cerebellar index (CI). Results indicate that the cortex of H. liberiensis shares one feature exclusively with cetaceans (the lack of layer IV across the entire cerebral cortex), other features exclusively with artiodactyls (e.g., the morphologiy of CR immunoreactive multipolar neurons in deep cortical layers, gyrencephalic index values, hippocampus and cerebellum volumetrics), and others with at least some species of cetartiodactyls (e.g., the presence of a thick layer I, the pattern of distribution of CR immunoreactive neurons, the presence of von Economo neurons, clustering of layer II in the occipital cortex). The present study thus provides a comprehensive dataset of the neuroanatomy of H. liberiensis that sets the ground for future comparative studies including the larger Hippopotamus amphibius.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 04/2014; DOI:10.1002/ar.22875 · 1.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study documents the morphology of neurons in several regions of the neocortex from the bottlenose dolphin (Tursiops truncatus), the North Atlantic minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Golgi-stained neurons (n = 210) were analyzed in the frontal and temporal neocortex as well as in the primary visual and primary motor areas. Qualitatively, all three species exhibited a diversity of neuronal morphologies, with spiny neurons including typical pyramidal types, similar to those observed in primates and rodents, as well as other spiny neuron types that had more variable morphology and/or orientation. Five neuron types, with a vertical apical dendrite, approximated the general pyramidal neuron morphology (i.e., typical pyramidal, extraverted, magnopyramidal, multiapical, and bitufted neurons), with a predominance of typical and extraverted pyramidal neurons. In what may represent a cetacean morphological apomorphy, both typical pyramidal and magnopyramidal neurons frequently exhibited a tri-tufted variant. In the humpback whale, there were also large, star-like neurons with no discernable apical dendrite. Aspiny bipolar and multipolar interneurons were morphologically consistent with those reported previously in other mammals. Quantitative analyses showed that neuronal size and dendritic extent increased in association with body size and brain mass (bottlenose dolphin < minke whale < humpback whale). The present data thus suggest that certain spiny neuron morphologies may be apomorphies in the neocortex of cetaceans as compared to other mammals and that neuronal dendritic extent covaries with brain and body size.
    Brain Structure and Function 08/2014; DOI:10.1007/s00429-014-0860-3 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae) Abstract The present study documents the morphology of neurons in several regions of the neocortex from the bottle-nose dolphin (Tursiops truncatus), the North Atlantic minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Golgi-stained neurons (n = 210) were analyzed in the frontal and temporal neo-cortex as well as in the primary visual and primary motor areas. Qualitatively, all three species exhibited a diversity of neuronal morphologies, with spiny neurons including typical pyramidal types, similar to those observed in primates and rodents, as well as other spiny neuron types that had more variable morphology and/or orientation. Five neuron types, with a vertical apical dendrite, approximated the general pyramidal neuron morphology (i.e., typical pyramidal, extraverted, magnopyramidal, multiapical, and bitufted neurons), with a predominance of typical and extraverted pyramidal neurons. In what may represent a cetacean mor-phological apomorphy, both typical pyramidal and magno-pyramidal neurons frequently exhibited a tri-tufted variant. In the humpback whale, there were also large, star-like neurons with no discernable apical dendrite. Aspiny bipolar and multipolar interneurons were morphologically consistent with those reported previously in other mammals. Quantita-tive analyses showed that neuronal size and dendritic extent increased in association with body size and brain mass (bottlenose dolphin \ minke whale \ humpback whale). The present data thus suggest that certain spiny neuron morphologies may be apomorphies in the neocortex of cetaceans as compared to other mammals and that neuronal dendritic extent covaries with brain and body size.