Article

Target-based antimicrobial drug discovery.

Wyeth Research, Pearl River, NY, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2008; 431:271-83.
Source: PubMed

ABSTRACT The continued increase in antibiotic resistance among bacterial pathogens, coupled with a decrease in infectious disease research among pharmaceutical companies, has escalated the need for novel and effective antibacterial chemotherapies. While current agents have emerged almost exclusively from whole-cell screening of natural products and small molecules that cause microbial death, recent advances in target identification and assay development have resulted in a flood of target-driven drug discovery methods. Whether genome-based methodologies will yield new classes of agents that conventional methods have been unable to is yet to be seen. At the end of the day, perhaps a synergy between old and new approaches will harvest the next generation of antibacterial treatments.

0 Followers
 · 
47 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nightmare of multi-drug resistant bacteria will still haunt if no panacea is ever found. Efforts on seeking desirable natural products with bactericidal property and screening chemically modified derivatives of traditional antibiotics have lagged behind the emergence of new multi-drug resistant bacteria. The concept of using antisense antibiotics, now as revolutionary as is on threshold has experienced ups and downs in the past decade. In the past five years, however, significant technology advances in the fields of microbial genomics, structural modification of oligonucleotides and efficient delivery system have led to fundamental progress in the research and in vivo application of this paradigm. The wealthy information provided in the microbial genomics era has allowed the identification and/or validation of a number of essential genes that may serve as possible targets for antisense inhibition; antisense oligodeoxynucleotides (ODNs) based on the 3rd generation of modified structures, e.g., peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) have shown great potency in gene expression inhibition in a sequence-specific and dosedependent manner at low micromolar concentrations; and cell penetrating peptide mediated delivery system has enabled the effective display of intracellular antisense inhibition of targeted genes both in vitro and in vivo. The new methods show promise in the discovery of novel gene-specific antisense antibiotics that will be useful in the future battle against drug-resistant bacterial infections. This review describes this promising paradigm, the targets that have been identified and the recent technologies on which it is delivered.
    Current Drug Discovery Technologies 05/2010; 7(2):76-85. DOI:10.2174/157016310793180594
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial cell division protein FtsZ polymerizes in a GTP-dependent manner to form a Z-ring that marks the plane of division. As a validated antimicrobial target, considerable efforts have been devoted to identify small molecule FtsZ inhibitors. We recently discovered the chrysophaentins, a novel suite of marine natural products that inhibit FtsZ activity in vitro. These natural products along with a synthetic hemi-chrysophaentin exhibit strong antimicrobial activity toward a broad spectrum of Gram-positive pathogens. To define their mechanisms of FtsZ inhibition and determine their in vivo effects in live bacteria, we used GTPase assays and fluorescence anisotropy to show that hemi-chrysophaentin competitively inhibits FtsZ activity. Furthermore, we developed a model system using a permeable Escherichia coli strain, envA1, together with an inducible FtsZ-yellow fluorescent protein construct to show by fluorescence microscopy that both chrysophaentin A and hemi-chrysophaentin disrupt Z-rings in live bacteria. We tested the E. coli system further by reproducing phenotypes observed for zantrins Z1 and Z3, and demonstrate that the alkaloid berberine, a reported FtsZ inhibitor, exhibits auto-fluorescence, making it incompatible with systems that employ GFP or YFP tagged FtsZ. These studies describe unique examples of nonnucleotide, competitive FtsZ inhibitors that disrupt FtsZ in vivo, together with a model system that should be useful for in vivo testing of FtsZ inhibitor leads that have been identified through in vitro screens but are unable to penetrate the Gram-negative outer membrane.
    Bioorganic & medicinal chemistry 07/2013; DOI:10.1016/j.bmc.2013.07.033 · 2.95 Impact Factor

Preview

Download
1 Download