Article

The Biology of Neurotrophins, Signalling Pathways, and Functional Peptide Mimetics of Neurotrophins and their Receptors

Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Third Avenue, CM19 5AW, Harlow, Essex, UK.
CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) (Impact Factor: 2.7). 03/2008; 7(1):46-62. DOI: 10.2174/187152708783885174
Source: PubMed

ABSTRACT The neurotrophins are a family of closely related proteins that were first identified as survival factors for sympathetic and sensory neurons, and have since been shown to control a number of aspects of survival, development and function of neurons in both the central and peripheral nervous systems. Limiting quantities of neurotrophins during development control the numbers of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. Biological effects of each of the four mammalian neurotrophins are mediated through activation of one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, all neurotrophins activate the p75 neurotrophin receptor (p75(NTR)), a member of the tumour necrosis factor receptor superfamily. Nerve growth factor (NGF), the best characterised member of the neurotrophin family, sends its survival signals through activation of TrkA and can induce death by binding to p75(NTR). Neurotrophin engagement of Trk receptors leads to activation of Ras, phosphatidylinositol 3-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, including the mitogen-activated protein kinases. Neurotrophin availability is required into adulthood, where they control synaptic function and plasticity, and sustain neuronal cell survival, morphology and differentiation. Preclinical studies point to the therapeutic potential of neurotrophic factors in preventing or slowing the progression of neurodegenerative conditions. Given the difficulties inherent with a protein therapeutic approach to treating central nervous system disorders, increasing attention has turned to the development of alternative strategies and, in particular, small molecule mimetics. This article will provide an overview of neurotrophin biology, their receptors, and signalling pathways, followed by a description of functional mimetics of neurotrophins acting at Trk receptors. Moreover, exciting recent data describing G-protein-coupled receptor transactivation of Trk receptors and their downstream signalling pathways raise the possibility of using small molecules to elicit neuroprotective effects.

1 Bookmark
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tanezumab, an antibody to nerve growth factor, was administered to pregnant cynomolgus monkeys at 0, 0.5, 4, and 30 mg/kg weekly, beginning gestation day (GD) 20 through parturition (~GD165). Maternal tanezumab administration appeared to increase stillbirths and infant mortality, but no consistent pattern of gross and/or microscopic change was detected to explain the mortality. Offspring exposed in utero were evaluated at 12 months of age using light microscopy (all tissues), stereology (basal forebrain cholinergic and dorsal root ganglia neurons), and morphometry (sural nerve). Light microscopy revealed decreased number of neurons in sympathetic ganglia (superior mesenteric, cervicothoracic, and ganglia in the thoracic sympathetic trunk). Stereologic assessment indicated an overall decrease in dorsal root ganglion (thoracic) volume and number of neurons in animals exposed to tanezumab 4 mg/kg (n = 9) and 30 mg/kg (n = 1). At all tanezumab doses, the sural nerve was small due to decreases in myelinated and unmyelinated axons. Existing axons/myelin sheaths appeared normal when viewed with light and transmission electron microscopy. There was no indication of tanezumab-related, active neuron/nerve fiber degeneration/necrosis in any tissue, indicating decreased sensory/sympathetic neurons and axonal changes were due to hypoplasia or atrophy. These changes in the sensory and sympathetic portions of the peripheral nervous system suggest some degree of developmental neurotoxicity, although what effect, if any, the changes had on normal function and survival was not apparent. Overall, these changes were consistent with published data from rodent studies.
    Toxicological Sciences 10/2014; 142(2). DOI:10.1093/toxsci/kfu192 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NGF binding to its protein kinase receptor TrkA is known to induce neurite outgrowth and neural cell differentiation. The plasma membrane expansion, necessary for the process, was shown to be contributed by the VAMP7-dependent exocytosis of endocytic vesicles. Working with wild-type PC12 (wtPC12), a cell model widely used to investigate NGF-induced neurite outgrowth, we found that a fewhours of treatment with the neurotrophin (and to a lower extent with basic FGF and EGF) induces the appearance of enlargeosome vesicles competent for VAMP4-dependent exocytosis abundant in high REST-PC12 clones. Both the neurite length assay and the immunocytochemistry of enlargeosomes exocytosis revealed that activation of TrkA is induced not only by NGF, but also by the L1 adhesion protein, L1CAM, whose soluble construct binds the receptor with submicromolar affinity. In the intact wtPC12, the L1CAM construct induced autophosphorylation and internalization of TrkA followed by the activation of the PI3K, MEK, and PKCĪ³ signaling cascades, analogous to the responses induced by NGF. Down-regulation of either VAMP7 or VAMP4 revealed the coparticipation of the two corresponding vesicles to the outgrowth responses induced by NGF and L1CAM. Finally, mixing experiments of wtPC12 cells rich in TrkA with high REST PC12 cells transfected with L1CAM documented the transactivation of the receptor by the adhesion protein surface-exposed in adjacent cells. In view of the known inhomogeneous surface distribution of both L1CAM and TrkA in various neural cells including neurons, their transcellular binding could be restricted to discrete sites, governing local signaling events distinct from those induced by soluble messengers.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1406097111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 09/2014; 34(39):13222-33. DOI:10.1523/JNEUROSCI.1209-13.2014 · 6.75 Impact Factor