Temperature-induced aggregation of poly(N-isopropylacrylamide)-stabilized CdS quantum dots in water.

Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
Langmuir (Impact Factor: 4.38). 04/2008; 24(6):2727-31. DOI: 10.1021/la703018p
Source: PubMed

ABSTRACT Water-soluble nanosized semiconductor CdS particles (quantum dots, QDs) were synthesized with a protective layer of covalently grafting linear thermally sensitive poly(N-isopropylacrylamide) chains. Reversible association and dissociation of these CdS particles can be induced via an alteration of the solution temperature. The formation and fragmentation of the QD aggregates of the CdS particles were systematically investigated by laser light scattering (LLS) and confirmed by transmission electron microscopy (TEM). There exists a hysteresis during one heating-and-cooling cycle. The CdS particles stabilized with shorter PNIPAM chains (Mn=15,000 g/mol) can associate to form larger and denser spherical aggregates with a much higher aggregation number than those grafted with longer PNIPAM chains (Mn=31,000 g/mol) in the heating process. The dissociation (fragmentation) in the cooling process has two stages: initially, the aggregates dissociate as the temperature decreases, and then, the fragmentation stops over a wider temperature range before complete dissociation. We attribute such a two-stage fragmentation to a balanced effect of inter- and intrachain hydrogen bonding as well as the hydrophobic interaction between PNIPAM chains and CdS particles.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The free adsorption of an end-functionalised weak polybase, poly dimethylaminoethyl methacrylate (pDMAEMA), on the surface of colloidal gold nanoparticles (AuNPs) as a route to produce a responsive core-shell nanoparticle is explored here. Optimal conditions for the physisorption of the polymeric chains onto the colloidal nanoparticles are explored. A dense coverage is facilitated by rapidly mixing the well solvated pH responsive homopolymer, at low pH, into a relatively poor solvent environment, at higher pH, containing a stable dispersion of charge-stabilised gold nanoparticles. The rapid pH change causes the polymer chains to concurrently collapse and adsorb onto the gold nanoparticles. In order to achieve sterically stable, monodisperse and responsive core shell nanoparticles, a crucial factor is the pH difference of the systems prior to their mixing. Once adsorbed, end-functional thiol groups on the adsorbed polymer chains can form more permanent covalent attachments with the core particles. Dynamic light scattering coupled with mobility data of pH titration experiments show that the core-shell particles exhibit a responsive character consistent with the observed potentiometric titration data of the polymer. The same particles demonstrate reversible aggregation when cycled between pH extremes. This is confirmed by shifts in the SPR peak of the corresponding UV-Vis absorption profile. The ease and flexibility of this strategy for core-shell particle production, coupled with the stability and responsiveness of the product, make this a promising colloidal coating mechanism.
    Journal of Colloid and Interface Science 06/2013; · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supramolecular conjugation techniques have been developed to produce novel nanosized systems by assembling materials with diverse physicochemical and biological features. These techniques have been adapted to obtain innovative bioconjugates to deliver drugs with poor biopharmaceutical properties and nano-devices with potential “theranostic” activity. Supramolecular drug delivery systems include polymer therapeutics such as drug–polymer bioconjugates, and colloidal carriers such as micelles, liposomes, polyplexes, and organic and inorganic nanoparticles. By virtue of their wide array of chemical composition and properties, polymers represent key elements for the construction of novel supramoelcular formulations.Polymer bioconjugation is a fledged technique for fabrication of protein–polymer conjugates. PEGylation, in particular, produces derivatives with enhanced pharmacokinetic, immunological, and stability properties as compared to the parent protein. Over the years, new methods have been set up to obtain site-directed polymer conjugation. In this review we report few grafting to and growing from PEGylation examples for the preparation of therapeutically effective protein bioconjugates.Supramolecular formulations with unique properties can be also obtained by assembling functional polymers, targeting agents, physicochemical modifiers, and biomodulators. These systems may be designed for disease tissue disposition and cell recognition/penetration. Cyclodextrins, for example, have been functionalized with polyethylene glycol and folic acid to produce tumor-targeted drug carriers. Interesting results have been obtained with this novel class of drug delivery systems. In addition, responsive polymers have been conjugated to gold nanoparticles to endow a new colloidal platform with triggerable cell disposition properties, which can be exploited either in biomedicine or diagnosis.
    Israel Journal of Chemistry (Online) 07/2010; 50(2):160 - 174. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We explore the phase behaviour, solution conformation, and interfacial properties of bottlebrush polymers with side-chains comprised of poly(N-isopropylacrylamide) (PNIPAAM), a thermally responsive polymer that exhibits a lower critical solution temperature (LCST) in water. PNIPAAM bottlebrush polymers with controlled side-chain length and side-chain end-group structure are prepared using a "grafting-through" technique. Due to reduced flexibility of bottlebrush polymer side-chains, side-chain end-groups have a disproportionate effect on bottlebrush polymer solubility and phase behaviour. Bottlebrush polymers with a hydrophobic end-group have poor water solubilities and depressed LCSTs, whereas bottlebrush polymers with thiol-terminated side-chains are fully water-soluble and exhibit an LCST greater than that of PNIPAAM homopolymers. The temperature-dependent solution conformation of PNIPAAM bottlebrush polymers in D2O is analyzed by small-angle neutron scattering (SANS), and data analysis using the Guinier-Porod model shows that the bottlebrush polymer radius decreases as the temperature increases towards the LCST for PNIPAAM bottlebrush polymers with relatively long 9 kg mol(-1) side-chains. Above the LCST, PNIPAAM bottlebrush polymers can form a lyotropic liquid crystal phase in water. Interfacial tension measurements show that bottlebrush polymers reduce the interfacial tension between chloroform and water to levels comparable to PNIPAAM homopolymers without the formation of microemulsions, suggesting that bottlebrush polymers are unable to stabilize highly curved interfaces. These results demonstrate that bottlebrush polymer side-chain length and flexibility impact phase behavior, solubility, and interfacial properties.
    Soft Matter 02/2014; 10(12):2008-15. · 3.91 Impact Factor

Full-text (2 Sources)

Available from
Jun 11, 2014