Article

Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study.

The Structural Genomics Consortium, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK.
Protein Expression and Purification (Impact Factor: 1.43). 06/2008; 59(1):94-102. DOI: 10.1016/j.pep.2008.01.008
Source: PubMed

ABSTRACT The efficiency of heterologous protein production in Escherichia coli (E. coli) can be diminished by biased codon usage. Approaches normally used to overcome this problem include targeted mutagenesis to remove rare codons or the addition of rare codon tRNAs in specific cell lines. Recently, improvements in technology have enabled cost-effective production of synthetic genes, making this a feasible alternative. To explore this option, the expression patterns in E. coli of 30 human short-chain dehydrogenase/reductase genes (SDRs) were analyzed in three independent experiments, comparing the native and synthetic (codon-optimized) versions of each gene. The constructs were prepared in a pET-derived vector that appends an N-terminal polyhistidine tag to the protein; expression was induced using IPTG and soluble proteins were isolated by Ni-NTA metal-affinity chromatography. Expression of the native and synthetic gene constructs was compared in two isogenic bacterial strains, one of which contained a plasmid (pRARE2) that carries seven tRNAs recognizing rare codons. Although we found some degree of variability between experiments, in normal E. coli synthetic genes could be expressed and purified more readily than the native version. In only one case was native gene expression better. Importantly, in most but not all cases, expression of the native genes in combination with rare codon tRNAs mimicked the behavior of the synthetic genes in the native strain. The trend is that heterologous expression of some proteins in bacteria can be improved by altering codon preference, but that this effect can be generally recapitulated by introducing rare codon tRNAs into the host cell.

0 Bookmarks
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Nucleic Acids Research 01/2015; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosome profiling data report on the distribution of translating ribosomes, at steady-state, with codon-level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate-reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation.
    Molecular Systems Biology 12/2014; 10(12). · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different isolates of dengue virus type-3, corresponding to the envelope protein domain III, were achieved from GenBank. Clustal V alignment tool was used to provide a consensus amino acid sequence. Nucleotide sequence of the coding gene was optimized using “Optimizer”. The origami (DE3) strain of Escherichia coli was used as the host in order to express the protein. A commercial affinity chromatography method was used to purify the recombinant protein. Immunogenicity of the recombinant protein was evaluated in mice using ELISA, MTT and cytokine assays. Results: A consensus amino acid sequence corresponding to the most important region of dengue virus type-3 envelope protein (domain III) was provided. A high concentration (≥ 20 mg/L culture medium) of soluble recombinant antigen (EDIII3) was achieved. Immunized mice developed specific antibody responses against EDIII3 protein. The splenocytes from EDIII3-immunized mice showed a high proliferation rate in comparison with the negative control. In addition, the concentrations of two measured cytokines (IFN-γ and IL-4) were increased markedly in immunized mice. Conclusion: The results showed that the designed expression system quantities of soluble and immunogenic recombinant antigen and can be applied to induction of immune responses against dengue virus type-3.
    Iranian Journal of Basic Medical Sciences 09/2014; 17:836-843.