Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia

Neurology Service, Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey 07018-1095, USA.
Diabetes (Impact Factor: 8.47). 06/2008; 57(5):1371-9. DOI: 10.2337/db07-1755
Source: PubMed

ABSTRACT The counterregulatory response to insulin-induced hypoglycemia is mediated by the ventromedial hypothalamus (VMH), which contains specialized glucosensing neurons, many of which use glucokinase (GK) as the rate-limiting step in glucose's regulation of neuronal activity. Since conditions associated with increased VMH GK expression are associated with a blunted counterregulatory response, we tested the hypothesis that increasing VMH GK activity would similarly attenuate, while decreasing GK activity would enhance the counterregulatory response to insulin-induced hypoglycemia.
The counterregulatory response to insulin-induced hypoglycemia was evaluated in Sprague-Dawley rats after bilateral VMH injections of 1) a GK activator drug (compound A) to increase VMH GK activity, 2) low-dose alloxan (4 mug) to acutely inhibit GK activity, 3) high-dose alloxan (24 microg), or 4) an adenovirus expressing GK short hairpin RNA (shRNA) to chronically reduce GK expression and activity.
Compound A increased VMH GK activity sixfold in vitro and reduced the epinephrine, norepinephrine, and glucagon responses to insulin-induced hypoglycemia by 40-62% when injected into the VMH in vivo. On the other hand, acute and chronic reductions of VMH GK mRNA or activity had a lesser and more selective effect on increasing primarily the epinephrine response to insulin-induced hypoglycemia by 23-50%.
These studies suggest that VMH GK activity is an important regulator of the counterregulatory response to insulin-induced hypoglycemia and that a drug that specifically inhibited the rise in hypothalamic GK activity after insulin-induced hypoglycemia might improve the dampened counterregulatory response seen in tightly controlled diabetic subjects.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamic (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on 45% fat diet, rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin resistant on 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats. Copyright © 2014, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology.
    AJP Regulatory Integrative and Comparative Physiology 12/2014; 308(3):ajpregu.00367.2014. DOI:10.1152/ajpregu.00367.2014 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the "sweet tooth" and carbohydrate craving.
    Journal of Clinical Investigation 12/2014; 125(1). DOI:10.1172/JCI77172 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and type 2 diabetes mellitus (T2DM) often occur together and affect a growing number of individuals in both the developed and developing worlds. Both are associated with a number of other serious illnesses that lead to increased rates of mortality. There is likely a polygenic mode of inheritance underlying both disorders, but it has become increasingly clear that the pre- and postnatal environments play critical roles in pushing predisposed individuals over the edge into a disease state. This review focuses on the many genetic and environmental variables that interact to cause predisposed individuals to become obese and diabetic. The brain and its interactions with the external and internal environment are a major focus given the prominent role these interactions play in the regulation of energy and glucose homeostasis in health and disease. Copyright © 2015 the American Physiological Society.
    Physiological Reviews 01/2015; 95(1):47-82. DOI:10.1152/physrev.00007.2014 · 29.04 Impact Factor