Calcium/calcineurin signaling in primary cortical astrocyte cultures: Rcan1-4 and cyclooxygenase-2 as NFAT target genes.

Department of Vascular Biology and Inflammation. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Glia (Impact Factor: 5.47). 06/2008; 56(7):709-22. DOI: 10.1002/glia.20647
Source: PubMed

ABSTRACT The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates important cell responses to calcium, but its activity and function in astrocytes have remained unclear. We show that primary cortical astrocyte cultures express the regulatory and catalytic subunits of the phosphatase calcineurin as well as the calcium-regulated NFAT family members (NFATc1, c2, c3, and c4). NFATs are activated by calcium-mobilizing agents in astrocytes, and this activation is blocked by the calcineurin inhibitor cyclosporine A. Microarray screening identified cyclooxygenase-2 (Cox-2), which is implicated in brain injury, and Rcan 1-4, an endogenous calcineurin inhibitor, as genes up-regulated by calcineurin-dependent calcium signals in astrocytes. Mobilization of intracellular calcium with ionophore potently augments the promoter activity and mRNA and protein expression of Rcan 1-4 and Cox-2 induced by combined treatment with phorbol esters. Moreover, Rcan 1-4 expression is efficiently induced by calcium mobilization alone. For both the genes, the calcium signal component is dependent on calcineurin and is replicated by exogenous expression of a constitutively active NFAT, strongly suggesting that the calcium-induced gene activation is mediated by NFATs. Finally, we report that calcineurin-dependent expression of Cox-2 and Rcan 1-4 is induced by physiological calcium mobilizing agents, such as thrombin, agonists of purinergic and glutamate receptors, and L-type voltage-gated calcium channels. These findings provide insights into calcium-initiated gene transcription in astrocytes, and have implications for the regulation of calcium responses in astrocytes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to peripheral immune/inflammatory cells, neuroglial cells appear to rely on calcineurin (CN) signaling pathways to regulate cytokine production and cellular activation. Several studies suggest that harmful immune/inflammatory responses may be the most impactful consequence of aberrant CN activity in glial cells. However, newly identified roles for CN in glutamate uptake, gap junction regulation, Ca2+ dyshomeostasis, and amyloid production suggest that CN¿s influence in glia may extend well beyond neuroinflammation. The following review will discuss the various actions of CN in glial cells, with particular emphasis on astrocytes, and consider the implications for neurologic dysfunction arising with aging, injury, and/or neurodegenerative disease.
    Journal of Neuroinflammation 09/2014; 11(1):158. DOI:10.1186/s12974-014-0158-7 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasma membrane Ca2+-ATPases (PMCA) extrude Ca2+ ions out of the cell and contribute to generation of calcium oscillations. Calcium signaling is crucial for transcriptional regulation of dopamine secretion by neuroendocrine PC12 cells. Low resting [Ca2+]c in PC12 cells is maintained mainly by two Ca2+-ATPases, PMCA2 and PMCA3. Recently, we found that Ca2+ dependent phosphatase calcineurin was excessively activated under conditions of experimental downregulation of PMCA2 or PMCA3. Thus, the aim of this study was to explain if, via modulation of the Ca2+/calcineurin-dependent nuclear factor of activated T cells (NFAT) pathway, PMCA2 and PMCA3 affect intracellular signaling in pheochromocytoma/neuronal cells/PC12 cells. Secondly, we tested whether this might influence dopamine secretion by PC12 cells. PMCA2- and PMCA3-deficient cells displayed profound decrease in dopamine secretion accompanied by a permanent increase in [Ca2+]c. Reduction in secretion might result from changes in NFAT signaling, following altered PMCA pattern. Consequently, activation of NFAT1 and NFAT3 transcription factors was observed in PMCA2- or PMCA3-deficient cells. Furthermore, chromatin immunoprecipitation assay indicated that NFATs could be involved in repression of Vamp genes encoding vesicle associated membrane proteins (VAMP). PMCA2 and PMCA3 are crucial for dopamine secretion in PC12 cells. Reduction in PMCA2 or PMCA3 led to calcium-dependent activation of calcineurin/NFAT signaling and, in consequence, to repression of the Vamp gene and deterioration of the SNARE complex formation in PC12 cells.
    PLoS ONE 03/2014; 9(3):e92176. DOI:10.1371/journal.pone.0092176 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AD, a devastating neurodegenerative disorder, is the most common cause of dementia in the elderly. Patients with AD are characterized by three hallmarks of neuropathology including neuritic plaque deposition, neurofibrillary tangle formation, and neuronal loss. Growing evidences indicate that dysregulation of regulator of calcineurin 1 (RCAN1) plays an important role in the pathogenesis of AD. Aberrant RCAN1 expression facilitates neuronal apoptosis and Tau hyperphosphorylation, leading to neuronal loss and neurofibrillary tangle formation. This review aims to describe the recent advances of the regulation of RCAN1 expression and its physiological functions. Moreover, the AD risk factors-induced RCAN1 dysregulation and its role in promoting neuronal loss, synaptic impairments and neurofibrillary tangle formation are summarized. Furthermore, we provide an outlook into the effects of RCAN1 dysregulation on APP processing, Aβ generation and neuritic plaque formation, and the possible underlying mechanisms, as well as the potential of targeting RCAN1 as a new therapeutic approach.
    Molecular Neurobiology 04/2014; 50(3). DOI:10.1007/s12035-014-8704-y · 5.29 Impact Factor


Available from
Jun 3, 2014
Available from