Article

Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans – man and his best friend share more than companionship

Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA.
Chromosome Research (Impact Factor: 2.69). 02/2008; 16(1):145-54. DOI: 10.1007/s10577-007-1212-4
Source: PubMed

ABSTRACT The pathophysiological similarities shared by many forms of human and canine disease, combined with the sophisticated genomic resources now available for the dog, have placed 'man's best friend' in a position of high visibility as a model system for a variety of biomedical concerns, including cancer. The importance of nonrandom cytogenetic abnormalities in human leukemia and lymphoma was recognized over 40 years ago, but the mechanisms of genome reorganization remain incompletely understood. The development of molecular cytogenetics, using fluorescence in situ hybridization (FISH) technology, has played a significant role in our understanding of cancer biology by providing a means for 'interrogating' tumor cells for a variety of gross genetic changes in the form of either numerical or structural chromosome aberrations. Here, we have identified cytogenetic abnormalities in naturally occurring canine hematopoietic tumors that are evolutionarily conserved compared with those that are considered characteristic of the corresponding human condition. These data suggest that humans and dogs share an ancestrally retained pathogenetic basis for cancer and that cytogenetic evaluation of canine tumors may provide greater insight into the biology of tumorigenesis.

Download full-text

Full-text

Available from: Matthew Breen, Jun 27, 2015
0 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Murine cancer models have been extremely useful for analyzing the biology of pathways involved in cancer initiation, promotion, and progression. Interestingly, several murine cancer models also exhibit heterogeneity, genomic instability and an intact immune system. However, they do not adequately represent several features that define cancer in humans, including long periods of latency, the complex biology of cancer recurrence and metastasis and outcomes to novel therapies. Therefore, additional models that better investigate the human disease are needed. In the pet population, with special references to the dog, cancer is a spontaneous disease and dogs naturally develop cancers that share many characteristics with human malignancies. More than 40 years ago, optimization of bone marrow transplantation protocols was undertaken in dogs and recently novel targeted therapies such as liposomal muramyl tripeptide phosphatidylethanolamine and several tyrosine kinase inhibitors, namely masitinib (AB1010) and toceranib phosphate (SU11654), have been developed to treat dog tumors which have then been translated to human clinical trials. In this review article, we will analyze biological data from dog tumors and comparative features with human tumors, and new therapeutic approaches translated from dog to human cancer.
    Critical reviews in oncology/hematology 04/2013; DOI:10.1016/j.critrevonc.2013.03.005 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, chronic infection with the gammaherpesvirus Epstein-Barr virus is usually asymptomatic; however some infected individuals develop hematological and epithelial malignancies. The exact role of EBV in lymphomagenesis is poorly understood partly because of the lack of clinically relevant animal models. Here we report the detection of serological responses against EBV capsid antigens in healthy dogs and dogs with spontaneous lymphoma and that dogs with the highest antibody titers have B cell lymphoma. Moreover, we demonstrate the presence of EBV-like viral DNA and RNA sequences and Latent Membrane Protein-1 in malignant lymph nodes of dogs with lymphoma. Finally, electron microscopy of canine malignant B cells revealed the presence of classic herpesvirus particles. These findings suggest that dogs can be naturally infected with an EBV-like gammaherpesvirus that may contribute to lymphomagenesis and that dogs might represent a spontaneous model to investigate environmental and genetic factors that influence gammaherpesvirus-associated lymphomagenesis in humans.
    Virology 03/2012; 427(2):107-17. DOI:10.1016/j.virol.2012.02.013 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia-initiating cells (LICs) have been the subject of considerable investigation because of their ability to self-renew and maintain leukemia. Thus, selective targeting and killing of LICs would provide highly efficient and novel therapeutic strategies. Here we explored whether we could use a canine leukemia cell line (G374) derived from a dog that received HOXB4-transduced repopulating cells to study leukemia in the murine xenograft model and the dog. G374 cells were infused in dogs intravenously and in nonobese diabetic/severe combined immunodeficient and nonobese diabetic/severe combined immunodeficient/IL2Rγ(null) mice either intravenously or directly into the bone cavity. Animals were bled to track engraftment and proliferation of G374 cells, and were sacrificed when they appeared ill. We found that canine LICs are capable of sustained in vitro self-renewal while maintaining their ability to induce acute myeloid leukemia, which resembles human disease in both dogs and mice. Furthermore, we developed a novel strategy for the quantification of LIC frequency in large animals and showed that this frequency was highly comparable to that determined by limited dilution in mouse xenotransplants. We also demonstrated, using single-cell analysis, that LICs are heterogeneous in their self-renewal capacity and regenerate a leukemic cell population consistent with a hierarchical leukemia model. The availability of this novel framework should accelerate the characterization of LICs and the translation of animal studies into clinical trials.
    Experimental hematology 10/2010; 39(1):124-32. DOI:10.1016/j.exphem.2010.09.012 · 2.81 Impact Factor