Article

Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin.

Academic Unit of Respiratory Medicine, University of Sheffield, Sheffield, UK.
The Journal of Immunology (Impact Factor: 5.36). 04/2008; 180(5):3502-11. DOI: 10.4049/jimmunol.180.5.3502
Source: PubMed

ABSTRACT Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neutrophil apoptosis both in vitro and in vivo, impairs host defenses, and favors bacterial persistence. In this study, we investigated the mechanisms of pyocyanin-induced neutrophil apoptosis. Pyocyanin induced early lysosomal dysfunction, shown by altered lysosomal pH, within 15 min of exposure. Lysosomal disruption was followed by mitochondrial membrane permeabilization, caspase activation, and destabilization of Mcl-1. Pharmacological inhibitors of a lysosomal protease, cathepsin D (CTSD), abrogated pyocyanin-induced apoptosis, and translocation of CTSD to the cytosol followed pyocyanin treatment and lysosomal disruption. A stable analog of cAMP (dibutyryl cAMP) impeded the translocation of CTSD and prevented the destabilization of Mcl-1 by pyocyanin. Thus, pyocyanin activated a coordinated series of events dependent upon lysosomal dysfunction and protease release, the first description of a bacterial toxin using a lysosomal cell death pathway. This may be a pathological pathway of cell death to which neutrophils are particularly susceptible, and could be therapeutically targeted to limit neutrophil death and preserve host responses.

Download full-text

Full-text

Available from: David H Dockrell, Jul 03, 2015
0 Followers
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pressurized hot water extracts obtained at different temperatures possess different compositions and antioxidant activities and, consequently, different bioactivities. We characterized two pressurized hot water extracts from grape pomace obtained at 100 °C (GPE100) and 200 °C (GPE200) in terms of antioxidant activity and composition, as well as protective effect on cell growth and mitochondrial membrane potential (Δψm) in a HL-60 cell culture under oxidative conditions. GPE100 extracts were richer in polyphenols and poorer in Maillard reaction products (MRPs) than were GPE200 extracts. Moreover, hydroxymethylfurfural was detected only in GPE200. Both extracts exhibited similar protective effects on cell growth (comparable to the effect of trolox). In addition, GPE100 strongly decreased the Δψm loss, reaching values even lower than those of the control culture. This protective effect may be related to its high polyphenols content. At the highest concentration assessed, both extracts showed strong cytotoxicity, especially GPE200. This cytotoxicity could be related to their MRPs content.
    Food Chemistry 03/2015; 171:62–69. DOI:10.1016/j.foodchem.2014.08.094 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hospital-acquired bacterial pneumonia is a common and serious complication of modern medical care. Many aspects of such infections remain unclear, including the mechanisms by which invading pathogens resist clearance by the innate immune response and the tendency of the infections to be polymicrobial. Here, we used a mouse model of infection to show that Pseudomonas aeruginosa, a leading cause of hospital-acquired pneumonia, interferes with the ability of recruited phagocytic cells to eradicate bacteria from the lung. Early in infection, phagocytic cells, predominantly neutrophils, are recruited to the lungs but are incapacitated when they enter the airways by the P. aeruginosa toxin ExoU. The resulting paucity of functioning phagocytes allows P. aeruginosa to persist within the lungs and results in local immunosuppression that facilitates superinfection with less-pathogenic bacteria. Together, our results provide explanations for previous reports linking ExoU-secreting P. aeruginosa with more severe pulmonary infections and for the tendency of hospital-acquired pneumonia to be polymicrobial.
    Infection and immunity 08/2008; 76(10):4414-21. DOI:10.1128/IAI.00012-08 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis is a major health problem and a leading cause of death worldwide. In recent years, a crescendo of attention has been directed to the mechanisms of cell death that develop during this disease, since these are viewed as important contributors to the proinflammatory and anti-inflammatory responses associated with poor outcome. Here we discuss mechanisms of cell death evident severe bacterial infection and sepsis including necrosis, apoptosis, pyroptosis, and extracellular trap-associated neutrophil death, with a particular emphasis on lymphocyte apoptosis and its contribution to the immunosuppressed phenotype of late sepsis. Individual bacterial pathogens express virulence factors that modulate cell death pathways and influence the sepsis phenotype. A greater knowledge of cell death pathways in sepsis informs the potential for future therapies designed to ameliorate immune dysfunction in this syndrome.
    Apoptosis 03/2009; 14(4):509-21. DOI:10.1007/s10495-009-0320-3 · 3.61 Impact Factor