Significant virus replication in Langerhans cells following application of HIV to abraded skin: relevance to occupational transmission of HIV.

Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
The Journal of Immunology (Impact Factor: 5.36). 03/2008; 180(5):3297-304. DOI: 10.4049/jimmunol.180.5.3297
Source: PubMed

ABSTRACT The cellular events that occur following occupational percutaneous exposure to HIV have not been defined. In this study, we studied relevant host cellular and molecular targets used for acquisition of HIV infection using split-thickness human skin explants. Blockade of CD4 or CCR5 before R5 HIV application to the epithelial surface of skin explants completely blocked subsequent HIV transmission from skin emigrants to allogeneic T cells, whereas preincubation with C-type lectin receptor inhibitors did not. Immunomagnetic bead depletion studies demonstrated that epithelial Langerhans cells (LC) accounted for >95% of HIV dissemination. When skin explants were exposed to HIV variants engineered to express GFP during productive infection, GFP+ T cells were found adjacent to GFP+ LC. In three distinct dendritic cell (DC) subsets identified among skin emigrants (CD1a+langerin+DC-specific intercellular adhesion molecule grabbing non-integrin (SIGN)- LC, CD1a+langerin-DC-SIGN- dermal DC, and CD1a-langerin-DC-SIGN+ dermal macrophages), HIV infection was detected only in LC. These results suggest that productive HIV infection of LC plays a critical role in virus dissemination from epithelium to cells located within subepithelial tissue. Thus, initiation of antiretroviral drugs soon after percutaneous HIV exposure may not prevent infection of LC, which is likely to occur rapidly, but may prevent or limit subsequent LC-mediated infection of T cells.

Download full-text


Available from: Andrew Blauvelt, Jun 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Entry of enveloped viruses into host cells depends on the interactions of viral surface proteins with cell surface receptors. Many enveloped viruses maximize the efficiency of receptor engagement by first binding to attachment-promoting factors, which concentrate virions on target cells and thus increase the likelihood of subsequent receptor engagement. Cellular lectins can recognize glycans on viral surface proteins and mediate viral uptake into immune cells for subsequent antigen presentation. Paradoxically, many viral and non-viral pathogens target lectins to attach to immune cells and to subvert cellular functions to promote their spread. Thus, it has been proposed that attachment of HIV to the dendritic cell lectin DC-SIGN enables the virus to hijack cellular transport processes to ensure its transmission to adjacent T cells. However, recent studies show that the consequences of viral capture by immune cell lectins can be diverse, and can entail negative and positive regulation of viral spread. Here, we will describe key concepts proposed for the role of lectins in HIV attachment to host cells, and we will discuss recent findings in this rapidly evolving area of research.
    Cellular Microbiology 11/2010; 12(11):1553-61. DOI:10.1111/j.1462-5822.2010.01519.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Women with bacterial vaginosis (BV) have a higher risk of HIV transmission but the cause of risk is unknown. Dendritic cells (DC) are implicated in transmission of HIV and we previously observed that DC mature when exposed to mucosal fluid from women with BV. We hypothesized that maturation of DC by BV mucosal fluid would enhance DC-mediated trans-infection of HIV. Monocyte-derived DC (MDDC) were treated with mucosal fluid, incubated with HIV(Bal), and HIV trans-infection was evaluated. While LPS-treated MDDC increased HIV(Bal)trans-infection, BV fluid reduced trans-infection. HIV(Bal) DNA levels in MDDC were not affected by BV fluid or LPS but productive infection of MDDC was decreased by LPS and BV fluid. Mucosal fluid from women with BV does not increase MDDC-mediated trans-infection suggesting that BV does not increase HIV susceptibility by increasing DC-mediated trans-infection. However, indirect effects of DC maturation on HIV transmission cannot be ruled out.
    Virology 03/2009; 385(1):22-7. DOI:10.1016/j.virol.2008.08.031 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal Langerhans cells (eLCs) uniquely express the C-type lectin receptor langerin in addition to the HIV entry receptors CD4 and CCR5. They are among the first target cells to encounter HIV in the anogenital stratified squamous mucosa during sexual transmission. Previous reports on the mechanism of HIV transfer to T cells and the role of langerin have been contradictory. In this study, we examined HIV replication and langerin-mediated viral transfer by authentic immature eLCs and model Mutz-3 LCs. eLCs were productively infected with HIV, whereas Mutz-3 LCs were not susceptible because of a lack of CCR5 expression. Two successive phases of HIV viral transfer to T cells via cave/vesicular trafficking and de novo replication were observed with eLCs as previously described in monocyte-derived or blood dendritic cells, but only first phase transfer was observed with Mutz-3 LCs. Langerin was expressed as trimers after cross-linking on the cell surface of Mutz-3 LCs and in this form preferentially bound HIV envelope protein gp140 and whole HIV particles via the carbohydrate recognition domain (CRD). Both phases of HIV transfer from eLCs to T cells were inhibited when eLCs were pretreated with a mAb to langerin CRD or when HIV was pretreated with a soluble langerin trimeric extracellular domain or by a CRD homolog. However, the langerin homolog did not inhibit direct HIV infection of T cells. These two novel soluble langerin inhibitors could be developed to prevent HIV uptake, infection, and subsequent transfer to T cells during early stages of infection.
    The Journal of Immunology 07/2014; 193(5). DOI:10.4049/jimmunol.1400630 · 5.36 Impact Factor