Article

Abuse and dependence liability of benzodiazepine-type drugs: GABAA receptor modulation and beyond

McLean Hospital/Harvard Medical School, Behavioral Psychopharmacology Research Laboratory, 115 Mill Street, Belmont, MA 02478, United States.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 08/2008; 90(1):74-89. DOI: 10.1016/j.pbb.2008.01.001
Source: PubMed

ABSTRACT Over the past several decades, benzodiazepines and the newer non-benzodiazepines have become the anxiolytic/hypnotics of choice over the more readily abused barbiturates. While all drugs from this class act at the GABA(A) receptor, benzodiazepine-type drugs offer the clear advantage of being safer and better tolerated. However, there is still potential for these drugs to be abused, and significant evidence exists to suggest that this is a growing problem. This review examines the behavioral determinants of the abuse and dependence liability of benzodiazepine-type drugs. Moreover, the pharmacological and putative biochemical basis of the abuse-related behavior is discussed.

0 Followers
 · 
126 Views
  • 10/2014; 16(5). DOI:10.4088/PCC.14l01668
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: La interrupción abrupta del incremento de la concentración en el espacio sináptico del neurotransmisor inhibitorio de la corteza cerebral, el ácido γ-amino butírico (GABA), condiciona un incremento en la actividad de las neuronas. La abstinencia al GABA es una analogía heurística con los síndromes de abstinencia desarrollados por otros agonistas del receptor GABAA como: las benzodiacepinas, los barbitúricos, los neuroesteroides y el alcohol.
    Salud Mental 10/2012; 35(5):427-434. · 0.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids) have been found to induce plasticity in the ventral tegmental area (VTA) dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of the circuitry.
    Frontiers in Pharmacology 11/2014; 5:256. DOI:10.3389/fphar.2014.00256

Full-text (2 Sources)

Download
55 Downloads
Available from
May 28, 2014