Synthetic homoserine lactone-derived sulfonylureas as inhibitors of Vibrio fischeri quorum sensing regulator

INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique, Bât J. Verne, 20 av A. Einstein, 69621 Villeurbanne Cedex, France.
Bioorganic & medicinal chemistry (Impact Factor: 2.95). 05/2008; 16(7):3550-6. DOI: 10.1016/j.bmc.2008.02.023
Source: PubMed

ABSTRACT A series of 9 homoserine lactone-derived sulfonylureas substituted by an alkyl chain, some of them bearing a phenyl group at the extremity, have been prepared. All compounds were found to inhibit the action of 3-oxo-hexanoyl-L-homoserine lactone, the natural inducer of bioluminescence in the bacterium Vibrio fischeri, the aliphatic compounds being more active than their phenyl-substituted counterparts. Molecular modelling studies performed on the most active compound in each series suggest that the antagonist activity could be related to the perturbation of the hydrogen-bond network in the ligand-protein complexes.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria belonging to the Pectobacterium genus are the causative agents of the blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing (QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of Pectobacterium. Four N,N'-bisalkylated imidazolium salts were identified as QSIs; they were active at the µM range. In potato tuber assays, two of them were able to decrease the severity of the symptoms provoked by P. atrosepticum. This work extends the range of the QSIs acting on the Pectobacterium-induced soft-rot disease.
    International Journal of Molecular Sciences 10/2013; 14(10):19976-19986. DOI:10.3390/ijms141019976 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria use a cell-to-cell communication activity termed "quorum sensing" to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called "autoinducers". During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled.
    Frontiers in Microbiology 05/2013; 4:114. DOI:10.3389/fmicb.2013.00114 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (-)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and its unambiguous stereochemical assignment. This versatile strategy for directed assembly of heterodimeric cyclotryptamine alkaloids has broad implications for the controlled synthesis of higher order derivatives with related substructures.
    Chemical Science 01/2014; 5(1). DOI:10.1039/C3SC52451E · 8.60 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014