Article

Stems Cells and the Pathways to Aging and Cancer

Immune Disease Institute, Harvard Stem Cell Institute, and the Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
Cell (Impact Factor: 33.12). 03/2008; 132(4):681-96. DOI: 10.1016/j.cell.2008.01.036
Source: PubMed

ABSTRACT The aging of tissue-specific stem cell and progenitor cell compartments is believed to be central to the decline of tissue and organ integrity and function in the elderly. Here, we examine evidence linking stem cell dysfunction to the pathophysiological conditions accompanying aging, focusing on the mechanisms underlying stem cell decline and their contribution to disease pathogenesis.

0 Followers
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC.
    Drug Design, Development and Therapy 02/2015; 9:993-1026. DOI:10.2147/DDDT.S73493 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clonal hemopoiesis driven by leukemia-associated gene mutations can occur without evidence of a blood disorder. To investigate this phenomenon, we interrogated 15 mutation hot spots in blood DNA from 4,219 individuals using ultra-deep sequencing. Using only the hot spots studied, we identified clonal hemopoiesis in 0.8% of individuals under 60, rising to 19.5% of those ≥90 years, thus predicting that clonal hemopoiesis is much more prevalent than previously realized. DNMT3A-R882 mutations were most common and, although their prevalence increased with age, were found in individuals as young as 25 years. By contrast, mutations affecting spliceosome genes SF3B1 and SRSF2, closely associated with the myelodysplastic syndromes, were identified only in those aged >70 years, with several individuals harboring more than one such mutation. This indicates that spliceosome gene mutations drive clonal expansion under selection pressures particular to the aging hemopoietic system and explains the high incidence of clonal disorders associated with these mutations in advanced old age. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aging is the major determinant of cancer incidence, which, in turn, is likely dictated in large part by processes that influence the progression of early subclinical (occult) cancers. However, there is little understanding of how aging informs changes in aggregate host signaling that favor cancer progression. In this study, we provide direct evidence that aging can serve as an organizing axis to define cancer progression-modulating processes. As a model system to explore this concept, we employed adolescent (68 days), young adult (143 days), middle-aged (551 days), and old (736 days) C57BL/6 mice as syngeneic hosts for engraftment of Lewis lung cancer to identify signaling and functional processes varying with host age. Older hosts exhibited dysregulated angiogenesis, metabolism, and apoptosis, all of which are associated with cancer progression. TGFβ1, a central player in these systemic processes, was downregulated consistently in older hosts. Our findings directly supported the conclusion of a strong host age dependence in determining the host tumor control dynamic. Furthermore, our results offer initial mechanism-based insights into how aging modulates tumor progression in ways that may be actionable for therapy or prevention. Cancer Res; 75(6); 1-10. ©2015 AACR. ©2015 American Association for Cancer Research.
    Cancer Research 03/2015; 75(6). DOI:10.1158/0008-5472.CAN-14-1053 · 9.28 Impact Factor

Preview

Download
1 Download
Available from