Article

Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations.

Institute of Human Genetics, University of Freiburg, Freiburg, D-79106 Freiburg, Germany.
Nature Genetics (Impact Factor: 35.21). 04/2008; 40(3):287-9. DOI: 10.1038/ng.86
Source: PubMed

ABSTRACT We identified four girls with a consistent constellation of facial dysmorphism and malformations previously reported in a single mother-daughter pair. Toe syndactyly, telecanthus and anogenital and renal malformations were present in all affected individuals; thus, we propose the name 'STAR syndrome' for this disorder. Using array CGH, qPCR and sequence analysis, we found causative mutations in FAM58A on Xq28 in all affected individuals, suggesting an X-linked dominant inheritance pattern for this recognizable syndrome.

0 Bookmarks
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome.
    Proceedings of the National Academy of Sciences 11/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2. LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV-Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wnt-driven cancers through the inhibition of PORCN.
    Proceedings of the National Academy of Sciences 11/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intellectual disability is a complex, variable, and heterogeneous disorder, representing a disabling condition diagnosed worldwide, and the etiologies are multiple and highly heterogeneous. Microscopic chromosomal abnormalities and well-characterized genetic conditions are the most common causes of intellectual disability. Chromosomal Microarray Analysis analyses have made it possible to identify putatively pathogenic copy number variation that could explain the molecular etiology of intellectual disability. The aim of the current study was to identify possible submicroscopic genomic alterations using a high-density chromosomal microarray in a retrospective cohort of patients with otherwise undiagnosable intellectual disabilities referred by doctors from the public health system in Central Brazil. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had intellectual disability and a normal karyotype. The analysis detected 18 CNVs in 60% of patients. Pathogenic CNVs represented about 22%, so it was possible to propose the etiology of intellectual disability for these patients. Likely pathogenic and unknown clinical significance CNVs represented 28% and 50%, respectively. Inherited and de novo CNVs were equally distributed. We report the nature of CNVs in patients from Central Brazil, representing a population not yet screened by microarray technologies.
    PLoS ONE 01/2014; 9(7):e103117. · 3.53 Impact Factor

Full-text (3 Sources)

Download
38 Downloads
Available from
May 17, 2014