A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic.

Departamento de Biofísica, Instituto de Fisiología Celular, Circuito Exterior S/N, Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico.
Nature Neuroscience (Impact Factor: 14.98). 04/2008; 11(3):255-61. DOI: 10.1038/nn2056
Source: PubMed

ABSTRACT Some members of the transient receptor potential (TRP) family of cation channels mediate sensory responses to irritant substances. Although it is well known that TRPA1 channels are activated by pungent compounds found in garlic, onion, mustard and cinnamon extracts, activation of TRPV1 by these extracts remains controversial. Here we establish that TRPV1 is activated by pungent extracts from onion and garlic, as well as by allicin, the active compound in these preparations, and participates together with TRPA1 in the pain-related behavior induced by this compound. We found that in TRPV1 these agents act by covalent modification of cysteine residues. In contrast to TRPA1 channels, modification of a single cysteine located in the N-terminal region of TRPV1 was necessary and sufficient for all the effects we observed. Our findings point to a conserved mechanism of activation in TRP channels, which provides new insights into the molecular basis of noxious stimuli detection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes.
    Life Sciences 10/2014; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Significance: Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. Recent Advances: Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. Critical Issues: The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. Future Directions: Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics. Antioxid. Redox Signal. 00, 000-000.
    Antioxidants & Redox Signaling 04/2014; · 8.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential vanilloid type 1 (TRPV1) channels are capable of detecting and integrating noxious stimuli and play an important role in nociceptor activation and sensitization. It has been demonstrated that oxidizing agents are capable of positively modulating (sensitizing) the TRPV1 channel. The present study investigates the ability of the thiol-oxidizing agent phenylarsine oxide (PAO) to modulate TRPV1 currents under voltage-clamp conditions. We assessed the ability of PAO to modulate both proton- and capsaicin-activated currents mediated by recombinant human TRPV1 channels as well as native rat and human TRPV1 channels in dorsal root ganglion (DRG) neurons. Experiments with other oxidizing and reducing agents having various membrane-permeating properties supported the intracellular oxidizing mechanism of PAO modulation. The PAO modulation of proton-activated currents was consistent across the cell types studied, with an increase in current across the proton concentrations studied. PAO modulation of the capsaicin-activated current in hTRPV1/Chinese hamster ovary cells consisted of potentiation of the current elicited with low capsaicin concentrations and inhibition of the current at higher concentrations. This same effect was seen with these recombinant cells in calcium imaging experiments and with native TRPV1 channels in rat DRG neurons. Contrary to this, currents in human DRG neurons were potentiated at all capsaicin concentrations tested after PAO treatment. These results could indicate important differences in the reduction–oxidation modulation of human TRPV1 channels in a native cellular environment. © 2014 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 09/2014; · 2.73 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014