Article

Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: Mechanisms for aquaporin 2 down-regulation and cellular proliferation

Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2008; 105(9):3634-9. DOI: 10.1073/pnas.0800001105
Source: PubMed

ABSTRACT Lithium is a commonly prescribed mood-stabilizing drug. However, chronic treatment with lithium induces numerous kidney-related side effects, such as dramatically reduced aquaporin 2 (AQP2) abundance, altered renal function, and structural changes. As a model system, inner medullary collecting ducts (IMCD) isolated from rats treated with lithium for either 1 or 2 weeks were subjected to differential 2D gel electrophoresis combined with mass spectrometry and bioinformatics analysis to identify (i) signaling pathways affected by lithium and (ii) unique candidate proteins for AQP2 regulation. After 1 or 2 weeks of lithium treatment, we identified 6 and 74 proteins with altered abundance compared with controls, respectively. We randomly selected 17 proteins with altered abundance caused by lithium treatment for validation by immunoblotting. Bioinformatics analysis of the data indicated that proteins involved in cell death, apoptosis, cell proliferation, and morphology are highly affected by lithium. We demonstrate that members of several signaling pathways are activated by lithium treatment, including the PKB/Akt-kinase and the mitogen-activated protein kinases (MAPK), such as extracellular regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38. Lithium treatment increased the intracellular accumulation of beta-catenin in association with increased levels of phosphorylated glycogen synthase kinase type 3beta (GSK3beta). This study provides a comprehensive analysis of the proteins affected by lithium treatment in the IMCD and, as such, provides clues to potential lithium targets in the brain.

0 Followers
 · 
80 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nephrogenic diabetes insipidus is a clinical sub-type of a diversely expounded disorder, named diabetes insipidus. It is characterized by inability of the renal cells to sense and respond to the stimulus of vasopressin. Amongst its various etiologies, one of the most inevitable causes includes lithium-induced instigation. Numerous studies reported marked histological damage to the kidneys upon long-term treatment with lithium. The recent researches have hypothesized many lithium-mediated mechanisms to explain the damage and dysfunction caused in the kidneys following lithium exposure. These mechanisms, widely, intend to justify the lithium-induced electrolyte imbalance, its interference with some vital proteins and a specific steroidal hormone, obstruction caused to a certain imperative transducer pathway and the renal tubular acidification defect produced on its prolonged therapy. Thorough study of such mechanisms aids in better understanding of the role of lithium in the pathophysiology of this disorder. Hence, the ameliorated knowledge regarding disease-pathology might prove beneficial in developing therapies that aim on disrupting the various lithium-mediated pathways. Hence, this may effectively lead to the demonstration of a novel treatment for nephrogenic diabetes insipidus, which is, at present, limited to the use of diuretics which block lithium reuptake into the body. Copyright © 2015. Published by Elsevier B.V.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aquaporin-2 (AQP2) mediates arginine vasopressin (AVP)-induced water reabsorption in the kidney collecting duct. AVP regulates AQP2 expression primarily via Gsα/cAMP/PKA signaling. Tankyrase, a member of PARP family, is known to mediate Wnt/β-catenin signaling-induced gene expression. We examined whether tankyrase plays a role in AVP-induced AQP2 regulation via ADP-ribosylation of G protein-alpha (Gα) and/or β-catenin-mediated transcription of AQP2. RT-PCR and immunoblotting analysis revealed the mRNA and protein expression of tankyrase in mouse kidney and mouse collecting duct mpkCCDc14 cells. dDAVP-induced AQP2 upregulation was attenuated in mpkCCDc14 cells under the tankyrase inhibition by XAV939 treatment or siRNA knockdown. FRET image analysis, however, revealed that XAV939 treatment did not affect dDAVP- or forskolin-induced PKA activation. Inhibition of tankyrase decreased dDAVP-induced phosphorylation of β-catenin (S552) and nuclear translocation of phospho-β-catenin. siRNA-mediated knockdown of β-catenin decreased forskolin-induced AQP2 transcription and dDAVP-induced AQP2 expression. Moreover, inhibition of PI3K/Akt, which was associated with decreased nuclear translocation of β-catenin, diminished dDAVP-induced AQP2 upregulation, further indicating that β-catenin mediates AQP2 expression. Taken together, tankyrase plays a role in AVP-induced AQP2 regulation, which is likely via β-catenin-mediated transcription of AQP2, but not ADP-ribosylation of Gα. The results provide novel insights on vasopressin-mediated urine concentration and homeostasis of body water metabolism. Copyright © 2014, American Journal of Physiology - Renal Physiology.
    American journal of physiology. Renal physiology 12/2014; DOI:10.1152/ajprenal.00052.2014 · 3.30 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
May 20, 2014