Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression.

Departments of Surgery and Cell and Developmental Biology, Carolina Cardiovascular Biology Center, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2008; 105(9):3362-7. DOI: 10.1073/pnas.0705842105
Source: PubMed

ABSTRACT We previously reported the importance of the serum response factor (SRF) cofactor myocardin in controlling muscle gene expression as well as the fundamental role for the inflammatory transcription factor NF-kappaB in governing cellular fate. Inactivation of myocardin has been implicated in malignant tumor growth. However, the underlying mechanism of myocardin regulation of cellular growth remains unclear. Here we show that NF-kappaB(p65) represses myocardin activation of cardiac and smooth muscle genes in a CArG-box-dependent manner. Consistent with their functional interaction, p65 directly interacts with myocardin and inhibits the formation of the myocardin/SRF/CArG ternary complex in vitro and in vivo. Conversely, myocardin decreases p65-mediated target gene activation by interfering with p65 DNA binding and abrogates LPS-induced TNF-alpha expression. Importantly, myocardin inhibits cellular proliferation by interfering with NF-kappaB-dependent cell-cycle regulation. Cumulatively, these findings identify a function for myocardin as an SRF-independent transcriptional repressor and cell-cycle regulator and provide a molecular mechanism by which interaction between NF-kappaB and myocardin plays a central role in modulating cellular proliferation and differentiation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.
    PLoS ONE 11/2014; 9(11):e112120. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular events that control cell fate determination in cardiac and smooth muscle lineages remain elusive. Myocardin is an important transcription co-factor that regulates cell proliferation, differentiation and development of the cardiovascular system. Here, we describe the construction and analysis of a dual Cre and Enhanced Green Fluorescent Protein (EGFP) knock-in mouse line in the Myocardin locus (MyocdKI). We report that the MyocdKI allele expresses the Cre enzyme and the EGFP in a manner that recapitulates endogenous Myocardin expression patterns. We show that Myocardin expression marks the earliest cardiac and smooth muscle lineages. Furthermore, this genetic model allows for the identification of a cardiac cell population which maintains both Myocardin and Isl-1 expression, in E7.75 - E8.0 embryos, highlighting the contributions and merge of the first and second heart fields during cardiogenesis. Therefore, the MyocdKI allele is a unique tool for studying cardiovascular development and lineage-specific gene manipulation. © 2014 Wiley Periodicals, Inc.
    genesis 08/2014; · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the architectural remodeling of venous vessel wall ranks as the basis of varicose veins development based on the phenotypic state of vascular smooth muscle cells (VSMCs). In this study, we firstly demonstrated an obvious up-regulation of IQ-domain GTPase-activating protein 1 (IQGAP1) in patients with varicose veins. Importantly, following stimulation with PDGF-BB for 4 h, a common inducer of phenotypic switch in VSMCs, a dramatically time-dependent increase in IQGAP1 expression was observed in human venous smooth muscle cells (HUVSMCs), concomitant with the down-regulation of SMC markers [including α-smooth muscle actin (SMA), smooth muscle calponin (CNN), SM22α (SM22)], suggesting a critical function of IQGAP1 during the switch of synthetic VSMC phenotype. Further analysis ascertained that IQGAP1 overexpression significantly inhibited the expression of SMA, SM and CNN, while its silencing dramatically promoted their expression levels. Moreover, the elevated IQGAP1 enhanced cell proliferation, migration and rearrangement. Mechanism assay confirmed that IQGAP1 overexpression notably blocked myocardin levels. Importantly, after transfection with myocardin siRNA, IQGAP1 down-regulation-induced decrease in cell proliferation, migration and cell rearrangement was remarkably attenuated. Together, these results demonstrated that IQGAP1 may regulate the phenotypic switch of VSMCs by myocardin pathway, which is critical for the pathological progression of varicose vein. Therefore, this study supports a prominent insight into how IQGAP1 possesses its benefit function in varicose veins development by regulating vascular remodeling.
    International journal of clinical and experimental pathology. 01/2014; 7(10):6475-85.


Available from